913 research outputs found

    Electroweak and Conformal Symmetry Breaking by a Strongly Coupled Hidden Sector

    Get PDF
    The LHC and other experiments show so far no sign of new physics and long-held beliefs about naturalness should be critically reexamined. We discuss therefore in this paper a model with a combined breaking of conformal and electroweak symmetry by a strongly coupled hidden sector. Even though the conformal symmetry is anomalous, this may still provide an explanation of the smallness of electroweak scale compared to the Planck scale. Specifically we start from a classically conformal model, in which a strongly coupled hidden sector undergoes spontaneous chiral symmetry breaking. A coupling via a real scalar field transmits the breaking scale to the Standard Model Higgs and triggers electroweak symmetry breaking. The model contains dark matter candidates in the form of dark pions, whose stability is being guaranteed by the flavor symmetry of hidden quark sector. We study its relic abundance and direct detection prospects with the Nambu-Jona-Lasinio method and discuss the phase transition in the dark sector as well as in the electroweak sector

    Audit quality and properties of analysts’ information environment

    Full text link
    © 2018 John Wiley & Sons Ltd We consider how audit quality impacts sell-side analysts’ information environment. Using the method outlined by Barron et al., we examine whether higher audit quality is associated with differences in the weight analysts place on common information relative to private information, as well as the extent to which audit quality separately impacts the precision of analysts’ private and common information. Our results show that, in instances where analysts revise their earnings forecasts for year t+1 shortly after the release of year t earnings, higher audit quality results in analysts placing more weight on public information. The precision of private (as well as public) information is improved. These results extend our understanding of how audit quality impacts on attributes of analysts’ forecasts and provides support for the argument that audit quality has important capital market implications

    Bulk Scale Factor at Very Early Universe

    Full text link
    In this paper we propose a higher dimensional Cosmology based on FRW model and brane-world scenario. We consider the warp factor in the brane-world scenario as a scale factor in 5-dimensional generalized FRW metric, which is called as bulk scale factor, and obtain the evolution of it with space-like and time-like extra dimensions. It is then showed that, additional space-like dimensions can produce exponentially bulk scale factor under repulsive strong gravitational force in the empty universe at a very early stage.Comment: 7 pages, October 201

    Higgs and Dark Matter Hints of an Oasis in the Desert

    Get PDF
    Recent LHC results suggest a standard model (SM)-like Higgs boson in the vicinity of 125 GeV with no clear indications yet of physics beyond the SM. At the same time, the SM is incomplete, since additional dynamics are required to accommodate cosmological dark matter (DM). In this paper we show that interactions between weak scale DM and the Higgs which are strong enough to yield a thermal relic abundance consistent with observation can easily destabilize the electroweak vacuum or drive the theory into a non-perturbative regime at a low scale. As a consequence, new physics--beyond the DM itself--must enter at a cutoff well below the Planck scale and in some cases as low as O(10 - 1000 TeV), a range relevant to indirect probes of flavor and CP violation. In addition, this cutoff is correlated with the DM mass and scattering cross-section in a parameter space which will be probed experimentally in the near term. Specifically, we consider the SM plus additional spin 0 or 1/2 states with singlet, triplet, or doublet electroweak quantum numbers and quartic or Yukawa couplings to the Higgs boson. We derive explicit expressions for the full two-loop RGEs and one-loop threshold corrections for these theories.Comment: 29 pages, 13 figure

    Planck Scale Boundary Conditions and the Higgs Mass

    Full text link
    If the LHC does only find a Higgs boson in the low mass region and no other new physics, then one should reconsider scenarios where the Standard Model with three right-handed neutrinos is valid up to Planck scale. We assume in this spirit that the Standard Model couplings are remnants of quantum gravity which implies certain generic boundary conditions for the Higgs quartic coupling at Planck scale. This leads to Higgs mass predictions at the electroweak scale via renormalization group equations. We find that several physically well motivated conditions yield a range of Higgs masses from 127-142 GeV. We also argue that a random quartic Higgs coupling at the Planck scale favors M_H > 150 GeV, which is clearly excluded. We discuss also the prospects for differentiating different boundary conditions imposed for \lambda(M_{pl}) at the LHC. A striking example is M_H = 127\pm 5 GeV corresponding to \lambda(M_{pl})=0, which would imply that the quartic Higgs coupling at the electroweak scale is entirely radiatively generated.Comment: 12 pages, 5 figures; references added and other minor improvements, matches version published in JHE

    Constraining Bosonic Supersymmetry from Higgs results and 8 TeV ATLAS multi-jets plus missing energy data

    Full text link
    The collider phenomenology of models with Universal Extra Dimensions (UED) is surprisingly similar to that of supersymmetric (SUSY) scenarios. For each level-1 bosonic (fermionic) Kaluza-Klein (KK) state, there is a fermionic (bosonic) analog in SUSY and thus UED scenarios are often known as bosonic supersymmetry. The minimal version of UED (mUED) gives rise to a quasi-degenerate particle spectrum at each KK-level and thus, can not explain the enhanced Higgs to diphoton decay rate hinted by the ATLAS collaboration of the Large Hadron Collider (LHC) experiment. However, in the non-minimal version of the UED (nmUED) model, the enhanced Higgs to diphoton decay rate can be easily explained via the suitable choice of boundary localized kinetic (BLK) terms for higher dimensional fermions and gauge bosons. BLK terms remove the degeneracy in the KK mass spectrum and thus, pair production of level-1 quarks and gluons at the LHC gives rise to hard jets, leptons and large missing energy in the final state. These final states are studied in details by the ATLAS and CMS collaborations in the context of SUSY scenarios. We find that the absence of any significant deviation of the data from the Standard Model (SM) prediction puts a lower bound of about 2.1 TeV on equal mass excited quarks and gluons.Comment: 19 page

    Three-loop \beta-functions for top-Yukawa and the Higgs self-interaction in the Standard Model

    Full text link
    We analytically compute the dominant contributions to the \beta-functions for the top-Yukawa coupling, the strong coupling and the Higgs self-coupling as well as the anomalous dimensions of the scalar, gluon and quark fields in the unbroken phase of the Standard Model at three-loop level. These are mainly the QCD and top-Yukawa corrections. The contributions from the Higgs self-interaction which are negligible for the running of the top-Yukawa and the strong coupling but important for the running of the Higgs self-coupling are also evaluated.Comment: 22 pages, 7 figures. Few extra citations are added; the plots are improved. Results in computer readable form can be retrieved from http://www-ttp.particle.uni-karlsruhe.de/Progdata/ttp12/ttp12-012

    Higgs mass and vacuum stability in the Standard Model at NNLO

    Get PDF
    We present the first complete next-to-next-to-leading order analysis of the Standard Model Higgs potential. We computed the two-loop QCD and Yukawa corrections to the relation between the Higgs quartic coupling (lambda) and the Higgs mass (Mh), reducing the theoretical uncertainty in the determination of the critical value of Mh for vacuum stability to 1 GeV. While lambda at the Planck scale is remarkably close to zero, absolute stability of the Higgs potential is excluded at 98% C.L. for Mh < 126 GeV. Possible consequences of the near vanishing of lambda at the Planck scale, including speculations about the role of the Higgs field during inflation, are discussed.Comment: 35 pages, 8 figures. Final published version, misprints fixed, figures update

    A Shift Symmetry in the Higgs Sector: Experimental Hints and Stringy Realizations

    Full text link
    We interpret reported hints of a Standard Model Higgs boson at ~ 125 GeV in terms of high-scale supersymmetry breaking with a shift symmetry in the Higgs sector. More specifically, the Higgs mass range suggested by recent LHC data extrapolates, within the (non-supersymmetric) Standard Model, to a vanishing quartic Higgs coupling at a UV scale between 10^6 and 10^18 GeV. Such a small value of lambda can be understood in terms of models with high-scale SUSY breaking if the Kahler potential possesses a shift symmetry, i.e., if it depends on H_u and H_d only in the combination (H_u+\bar{H}_d). This symmetry is known to arise rather naturally in certain heterotic compactifications. We suggest that such a structure of the Higgs Kahler potential is common in a wider class of string constructions, including intersecting D7- and D6-brane models and their extensions to F-theory or M-theory. The latest LHC data may thus be interpreted as hinting to a particular class of compactifications which possess this shift symmetry.Comment: v2: References added. v3: References added, published versio

    Impact of massive neutrinos on the Higgs self-coupling and electroweak vacuum stability

    Full text link
    The presence of right-handed neutrinos in the type I seesaw mechanism may lead to significant corrections to the RG evolution of the Higgs self-coupling. Compared to the Standard Model case, the Higgs mass window can become narrower, and the cutoff scale become lower. Naively, these effects decrease with decreasing right-handed neutrino mass. However, we point out that the unknown Dirac Yukawa matrix may impact the vacuum stability constraints even in the low scale seesaw case not far away from the electroweak scale, hence much below the canonical seesaw scale of 10^15 GeV. This includes situations in which production of right-handed neutrinos at colliders is possible. We illustrate this within a particular parametrization of the Dirac Yukawas and with explicit low scale seesaw models. We also note the effect of massive neutrinos on the top quark Yukawa coupling, whose high energy value can be increased with respect to the Standard Model case.Comment: 17 pages, 7 figures, minor revisions, version to appear in JHE
    • …
    corecore