913 research outputs found
Electroweak and Conformal Symmetry Breaking by a Strongly Coupled Hidden Sector
The LHC and other experiments show so far no sign of new physics and long-held beliefs about naturalness should be critically reexamined. We discuss therefore in this paper a model with a combined breaking of conformal and electroweak symmetry by a strongly coupled hidden sector. Even though the conformal symmetry is anomalous, this may still provide an explanation of the smallness of electroweak scale compared to the Planck scale. Specifically we start from a classically conformal model, in which a strongly coupled hidden sector undergoes spontaneous chiral symmetry breaking. A coupling via a real scalar field transmits the breaking scale to the Standard Model Higgs and triggers electroweak symmetry breaking. The model contains dark matter candidates in the form of dark pions, whose stability is being guaranteed by the flavor symmetry of hidden quark sector. We study its relic abundance and direct detection prospects with the Nambu-Jona-Lasinio method and discuss the phase transition in the dark sector as well as in the electroweak sector
Audit quality and properties of analysts’ information environment
© 2018 John Wiley & Sons Ltd We consider how audit quality impacts sell-side analysts’ information environment. Using the method outlined by Barron et al., we examine whether higher audit quality is associated with differences in the weight analysts place on common information relative to private information, as well as the extent to which audit quality separately impacts the precision of analysts’ private and common information. Our results show that, in instances where analysts revise their earnings forecasts for year t+1 shortly after the release of year t earnings, higher audit quality results in analysts placing more weight on public information. The precision of private (as well as public) information is improved. These results extend our understanding of how audit quality impacts on attributes of analysts’ forecasts and provides support for the argument that audit quality has important capital market implications
Bulk Scale Factor at Very Early Universe
In this paper we propose a higher dimensional Cosmology based on FRW model
and brane-world scenario. We consider the warp factor in the brane-world
scenario as a scale factor in 5-dimensional generalized FRW metric, which is
called as bulk scale factor, and obtain the evolution of it with space-like and
time-like extra dimensions. It is then showed that, additional space-like
dimensions can produce exponentially bulk scale factor under repulsive strong
gravitational force in the empty universe at a very early stage.Comment: 7 pages, October 201
Higgs and Dark Matter Hints of an Oasis in the Desert
Recent LHC results suggest a standard model (SM)-like Higgs boson in the
vicinity of 125 GeV with no clear indications yet of physics beyond the SM. At
the same time, the SM is incomplete, since additional dynamics are required to
accommodate cosmological dark matter (DM). In this paper we show that
interactions between weak scale DM and the Higgs which are strong enough to
yield a thermal relic abundance consistent with observation can easily
destabilize the electroweak vacuum or drive the theory into a non-perturbative
regime at a low scale. As a consequence, new physics--beyond the DM
itself--must enter at a cutoff well below the Planck scale and in some cases as
low as O(10 - 1000 TeV), a range relevant to indirect probes of flavor and CP
violation. In addition, this cutoff is correlated with the DM mass and
scattering cross-section in a parameter space which will be probed
experimentally in the near term. Specifically, we consider the SM plus
additional spin 0 or 1/2 states with singlet, triplet, or doublet electroweak
quantum numbers and quartic or Yukawa couplings to the Higgs boson. We derive
explicit expressions for the full two-loop RGEs and one-loop threshold
corrections for these theories.Comment: 29 pages, 13 figure
Planck Scale Boundary Conditions and the Higgs Mass
If the LHC does only find a Higgs boson in the low mass region and no other
new physics, then one should reconsider scenarios where the Standard Model with
three right-handed neutrinos is valid up to Planck scale. We assume in this
spirit that the Standard Model couplings are remnants of quantum gravity which
implies certain generic boundary conditions for the Higgs quartic coupling at
Planck scale. This leads to Higgs mass predictions at the electroweak scale via
renormalization group equations. We find that several physically well motivated
conditions yield a range of Higgs masses from 127-142 GeV. We also argue that a
random quartic Higgs coupling at the Planck scale favors M_H > 150 GeV, which
is clearly excluded. We discuss also the prospects for differentiating
different boundary conditions imposed for \lambda(M_{pl}) at the LHC. A
striking example is M_H = 127\pm 5 GeV corresponding to \lambda(M_{pl})=0,
which would imply that the quartic Higgs coupling at the electroweak scale is
entirely radiatively generated.Comment: 12 pages, 5 figures; references added and other minor improvements,
matches version published in JHE
Constraining Bosonic Supersymmetry from Higgs results and 8 TeV ATLAS multi-jets plus missing energy data
The collider phenomenology of models with Universal Extra Dimensions (UED) is
surprisingly similar to that of supersymmetric (SUSY) scenarios. For each
level-1 bosonic (fermionic) Kaluza-Klein (KK) state, there is a fermionic
(bosonic) analog in SUSY and thus UED scenarios are often known as bosonic
supersymmetry. The minimal version of UED (mUED) gives rise to a
quasi-degenerate particle spectrum at each KK-level and thus, can not explain
the enhanced Higgs to diphoton decay rate hinted by the ATLAS collaboration of
the Large Hadron Collider (LHC) experiment. However, in the non-minimal version
of the UED (nmUED) model, the enhanced Higgs to diphoton decay rate can be
easily explained via the suitable choice of boundary localized kinetic (BLK)
terms for higher dimensional fermions and gauge bosons. BLK terms remove the
degeneracy in the KK mass spectrum and thus, pair production of level-1 quarks
and gluons at the LHC gives rise to hard jets, leptons and large missing energy
in the final state. These final states are studied in details by the ATLAS and
CMS collaborations in the context of SUSY scenarios. We find that the absence
of any significant deviation of the data from the Standard Model (SM)
prediction puts a lower bound of about 2.1 TeV on equal mass excited quarks and
gluons.Comment: 19 page
Three-loop \beta-functions for top-Yukawa and the Higgs self-interaction in the Standard Model
We analytically compute the dominant contributions to the \beta-functions for
the top-Yukawa coupling, the strong coupling and the Higgs self-coupling as
well as the anomalous dimensions of the scalar, gluon and quark fields in the
unbroken phase of the Standard Model at three-loop level. These are mainly the
QCD and top-Yukawa corrections. The contributions from the Higgs
self-interaction which are negligible for the running of the top-Yukawa and the
strong coupling but important for the running of the Higgs self-coupling are
also evaluated.Comment: 22 pages, 7 figures. Few extra citations are added; the plots are
improved. Results in computer readable form can be retrieved from
http://www-ttp.particle.uni-karlsruhe.de/Progdata/ttp12/ttp12-012
Higgs mass and vacuum stability in the Standard Model at NNLO
We present the first complete next-to-next-to-leading order analysis of the
Standard Model Higgs potential. We computed the two-loop QCD and Yukawa
corrections to the relation between the Higgs quartic coupling (lambda) and the
Higgs mass (Mh), reducing the theoretical uncertainty in the determination of
the critical value of Mh for vacuum stability to 1 GeV. While lambda at the
Planck scale is remarkably close to zero, absolute stability of the Higgs
potential is excluded at 98% C.L. for Mh < 126 GeV. Possible consequences of
the near vanishing of lambda at the Planck scale, including speculations about
the role of the Higgs field during inflation, are discussed.Comment: 35 pages, 8 figures. Final published version, misprints fixed,
figures update
A Shift Symmetry in the Higgs Sector: Experimental Hints and Stringy Realizations
We interpret reported hints of a Standard Model Higgs boson at ~ 125 GeV in
terms of high-scale supersymmetry breaking with a shift symmetry in the Higgs
sector. More specifically, the Higgs mass range suggested by recent LHC data
extrapolates, within the (non-supersymmetric) Standard Model, to a vanishing
quartic Higgs coupling at a UV scale between 10^6 and 10^18 GeV. Such a small
value of lambda can be understood in terms of models with high-scale SUSY
breaking if the Kahler potential possesses a shift symmetry, i.e., if it
depends on H_u and H_d only in the combination (H_u+\bar{H}_d). This symmetry
is known to arise rather naturally in certain heterotic compactifications. We
suggest that such a structure of the Higgs Kahler potential is common in a
wider class of string constructions, including intersecting D7- and D6-brane
models and their extensions to F-theory or M-theory. The latest LHC data may
thus be interpreted as hinting to a particular class of compactifications which
possess this shift symmetry.Comment: v2: References added. v3: References added, published versio
Impact of massive neutrinos on the Higgs self-coupling and electroweak vacuum stability
The presence of right-handed neutrinos in the type I seesaw mechanism may
lead to significant corrections to the RG evolution of the Higgs self-coupling.
Compared to the Standard Model case, the Higgs mass window can become narrower,
and the cutoff scale become lower. Naively, these effects decrease with
decreasing right-handed neutrino mass. However, we point out that the unknown
Dirac Yukawa matrix may impact the vacuum stability constraints even in the low
scale seesaw case not far away from the electroweak scale, hence much below the
canonical seesaw scale of 10^15 GeV. This includes situations in which
production of right-handed neutrinos at colliders is possible. We illustrate
this within a particular parametrization of the Dirac Yukawas and with explicit
low scale seesaw models. We also note the effect of massive neutrinos on the
top quark Yukawa coupling, whose high energy value can be increased with
respect to the Standard Model case.Comment: 17 pages, 7 figures, minor revisions, version to appear in JHE
- …