425 research outputs found

    Arsenic in standard reference material 1571 (Orchard Leaves)

    Get PDF

    Self-Organization, Layered Structure, and Aggregation Enhance Persistence of a Synthetic Biofilm Consortium

    Get PDF
    Microbial consortia constitute a majority of the earth’s biomass, but little is known about how these cooperating communities persist despite competition among community members. Theory suggests that non-random spatial structures contribute to the persistence of mixed communities; when particular structures form, they may provide associated community members with a growth advantage over unassociated members. If true, this has implications for the rise and persistence of multi-cellular organisms. However, this theory is difficult to study because we rarely observe initial instances of non-random physical structure in natural populations. Using two engineered strains of Escherichia coli that constitute a synthetic symbiotic microbial consortium, we fortuitously observed such spatial self-organization. This consortium forms a biofilm and, after several days, adopts a defined layered structure that is associated with two unexpected, measurable growth advantages. First, the consortium cannot successfully colonize a new, downstream environment until it selforganizes in the initial environment; in other words, the structure enhances the ability of the consortium to survive environmental disruptions. Second, when the layered structure forms in downstream environments the consortium accumulates significantly more biomass than it did in the initial environment; in other words, the structure enhances the global productivity of the consortium. We also observed that the layered structure only assembles in downstream environments that are colonized by aggregates from a previous, structured community. These results demonstrate roles for self-organization and aggregation in persistence of multi-cellular communities, and also illustrate a role for the techniques of synthetic biology in elucidating fundamental biological principles

    Methods and Costs to Achieve Ultra Reliable Life Support

    Get PDF
    A published Mars mission is used to explore the methods and costs to achieve ultra reliable life support. The Mars mission and its recycling life support design are described. The life support systems were made triply redundant, implying that each individual system will have fairly good reliability. Ultra reliable life support is needed for Mars and other long, distant missions. Current systems apparently have insufficient reliability. The life cycle cost of the Mars life support system is estimated. Reliability can be increased by improving the intrinsic system reliability, adding spare parts, or by providing technically diverse redundant systems. The costs of these approaches are estimated. Adding spares is least costly but may be defeated by common cause failures. Using two technically diverse systems is effective but doubles the life cycle cost. Achieving ultra reliability is worth its high cost because the penalty for failure is very high

    Elevated Human Telomerase Reverse Transcriptase Gene Expression in Blood Cells Associated with Chronic Arsenic Exposure in Inner Mongolia, China

    Get PDF
    Background Arsenic exposure is associated with human cancer. Telomerase-containing human telomerase reverse transcriptase (hTERT) can extend telomeres of chromosomes, delay senescence, and promote cell proliferation leading to tumorigenesis.ObjectiveThe goal of this study was to investigate the effects of As on hTERT mRNA expression in humans and in vitro. Method A total of 324 Inner Mongolia residents who have been exposed to As via drinking water participated in this study. Water and toenail samples were collected and analyzed for As. Blood samples were quantified for hTERT mRNA expression using real-time polymerase chain reaction. The hTERT mRNA levels were linked to water and nail As concentrations and skin hyperkeratosis. Human epidermal keratinocytes were treated with arsenite to assess effects on cell viability and hTERT expression in vitro.ResultshTERT mRNA expression levels were significantly associated with As concentrations of water (p < 0.0001) and nails (p = 0.002) and also associated with severity of skin hyperkeratosis (p < 0.05), adjusting for age, sex, smoking, and pesticide use. Females showed a higher slope than males (females: 0.126, p = 0.0005; males: 0.079, p = 0.017). In addition to water and nail As concentrations, age (p < 0.0001) and pesticide use (p = 0.025) also showed significant associations with hTERT expression. The hTERT expression levels decreased with age. Tobacco smoking did not affect hTERT expression (p = 0.13). hTERT expression was significantly correlated with OGG1 and ERCC1 expression. The in vitro results also showed a dose–response relationship between arsenite concentrations and hTERT expression and reached the peak at 1 μM. Conclusion shTERT expression was associated with As exposure in vivo and in vitro. The increased hTERT expression may be a cellular response to genomic insults by As and may also indicate that As may function as a tumor promoter in carcinogenesis in humans

    Biofilm Induced Tolerance towards Antimicrobial Peptides

    Get PDF
    Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We address the question of how biofilm organization affects antibiotic susceptibility. We established Escherichia coli biofilms with differential structural organization due to the presence of IncF plasmids expressing altered forms of the transfer pili in two different biofilm model systems. The mature biofilms were subsequently treated with two antibiotics with different molecular targets, the peptide antibiotic colistin and the fluoroquinolone ciprofloxacin. The dynamics of microbial killing were monitored by viable count determination, and confocal laser microscopy. Strains forming structurally organized biofilms show an increased bacterial survival when challenged with colistin, compared to strains forming unstructured biofilms. The increased survival is due to genetically regulated tolerant subpopulation formation and not caused by a general biofilm property. No significant difference in survival was detected when the strains were challenged with ciprofloxacin. Our data show that biofilm formation confers increased colistin tolerance to cells within the biofilm structure, but the protection is conditional being dependent on the structural organization of the biofilm, and the induction of specific tolerance mechanisms

    Influence of quorum sensing signal molecules on biofilm formation in Proteus mirabilis O18

    Get PDF
    The influence of basis of quorum sensing molecules on Proteus strains is much less known as compared to Pseudomonas or Escherichia. We have previously shown that a series of acylated homoserine lactones (acyl-HSL) does not influence the ureolytic, proteolytic, or hemolytic abilities, and that the swarming motility of Proteus mirabilis rods is strain specific. The aim of the presented study was to find out if the presence of a series of acyl-HSL influences biofilm formation of P. mirabilis laboratory strain belonging to O18 serogroup. This serogroup is characterized by the presence of a unique non-carbohydrate component, namely phosphocholine. Escherichia coli and P. mirabilis O18 strains used in this work contains cloned plasmids encoding fluorescent protein genes with constitutive gene expression. In mixed biofilms in stationary and continuous flow conditions, P. mirabilis O18 overgrow whole culture. P. mirabilis O18 strain has genetically proved a presence of AI–2 quorum sensing system. Differences in biofilm structure were observed depending on the biofilm type and culture methods. From tested acylated homoserine lactones (BHL, HHL, OHL, DHL, dDHL, tDHL), a significant influence had BHL on thickness, structure, and the amount of exopolysaccharides produced by biofilms formed by P. mirabilis O18 pDsRed2
    • …
    corecore