746 research outputs found

    What can history tell us about the future of aquaculture genetics

    Get PDF
    Historically, genetics has not been a major part of aquatic sciences education or practices. However, it is interesting to note that one of the first animals used for genetic research after rediscovery of Mendel’s results was a Poeciliid, i.e., the guppy. Furthermore, the use of genetic principles and practices for improvement of aquatic species raised under controlled or semi-con- trolled conditions has not become a standard component of aquaculture production, contrary to the situation with other agricultural plants and animals. A number of explanations for the lack of utilization of otherwise accepted genetic approaches will be explored. In addition to the seeming reticence to employ the standard genetic approaches in aquaculture, realization of the purport- ed promise of some of the more recently developed molecular genetic tools has been slower than anticipated. In addition to the difficulties experienced with deployment of this technology, the costs and the need for larger multidisciplinary teams to develop the tools for reliable analy- ses have raised challenges not previously experienced in the field. These factors have led to increased efforts to utilize cooperative approaches to major genetic problems that need to be solved. It would appear that future employment of modern genetic analytical tools to improve aquaculture production will be enhanced and, in fact, further assured via cooperative research ventures

    Genomic organization of the mouse granzyme A gene. Two mRNAs encode the same mature granzyme A with different leader peptides

    Get PDF
    Granzyme A is a serine protease that, together with the other granular components of cytotoxic T lymphocyte (CTL) cells, has been implicated in the cytolysis process. We report here two different messages and the genomic organization of the mouse granzyme A gene. The granzyme A gene is composed of six exons spanning 7 kilobases. Alternative splicing of the second exon results in the two transcripts. The two mRNA species encode the same mature granzyme A protein but with different leader sequences. The first (HF1) encodes a typical leader signal sequence similar to other granzymes, but the second (HF2) putative leader sequence is different and less hydrophobic. Both messages are present in cultured CTL cell lines and in normal lymphoid tissues. They are both induced when CTL cells are activated in vitro or in vivo. Both messages can be translated in vitro, although the HF1 message appears to be much more efficient as a template. The putative 5' promoter region of the HF gene sequenced (500 base pairs of upstream sequences) contains no well defined promoter sequences aside from the TATA box. The results suggest that (a) granzyme A may be produced with putative different leader sequences from two different mRNAs; (b) this may provide a model system for studying alternate splicing and the evolution of a complex enzymatic system in an organelle; and (c) the genomic DNA reported will be useful for studying transcription regulations involved in controlling the specific expression pattern of this gene

    Energetic Cost of Ichthyophonus Infection in Juvenile Pacific Herring (Clupea pallasii)

    Get PDF
    The energetic costs of fasting and Ichthyophonus infection were measured in juvenile Pacific herring (Clupea pallasii) in a lab setting at three temperatures. Infected herring incurred significant energetic costs, the magnitude of which depended on fish condition at the time of infection (fat versus lean). Herring that were fed continually and were in relatively good condition at the time of infection (fat) never stored lipid despite ad libitum feeding. In feeding herring, the energetic cost of infection was a 30% reduction in total energy content relative to controls 52 days post infection. Following food deprivation (lean condition), infection caused an initial delay in the compensatory response of herring. Thirty-one days after re-feeding, the energetic cost of infection in previously-fasted fish was a 32% reduction in total energy content relative to controls. Body composition of infected herring subsequently recovered to some degree, though infected herring never attained the same energy content as their continuously fed counterparts. Fifty-two days after re-feeding, the energetic cost of infection in previously-fasted fish was a 6% reduction in total energy content relative to controls. The greatest impacts of infection occurred in colder temperatures, suggesting Ichthyophonus-induced reductions in body condition may have greater consequences in the northern extent of herring's range, where juveniles use most of their energy reserves to survive their first winter

    Effects of Environmental Temperature on the Dynamics of Ichthyophoniasis in Juvenile Pacific Herring (Clupea pallasii)

    Get PDF
    The effects of temperature and infection by Ichthyophonus were examined in juvenile Pacific herring (Clupea pallasii) maintained under simulated overwinter fasting conditions. In addition to defining parameters for a herring bioenergetics model (discussed in Vollenweider et al. this issue), these experiments provided new insights into factors influencing the infectivity and virulence of the parasite Ichthyophonus. In groups of fish with established disease, temperature variation had little effect on disease outcome. Ichthyophonus mortality outpaced that resulting from starvation alone. In newly infected fish, temperature variation significantly changed the mortality patterns related to disease. Both elevated and lowered temperatures suppressed disease-related mortality relative to ambient treatments. When parasite exposure dose decreased, an inverse relationship between infection prevalence and temperature was detected. These findings suggest interplay between temperature optima for parasite growth and host immune function and have implications for our understanding of how Ichthyophonus infections are established in wild fish populations

    Computing a rectilinear shortest path amid splinegons in plane

    Full text link
    We reduce the problem of computing a rectilinear shortest path between two given points s and t in the splinegonal domain \calS to the problem of computing a rectilinear shortest path between two points in the polygonal domain. As part of this, we define a polygonal domain \calP from \calS and transform a rectilinear shortest path computed in \calP to a path between s and t amid splinegon obstacles in \calS. When \calS comprises of h pairwise disjoint splinegons with a total of n vertices, excluding the time to compute a rectilinear shortest path amid polygons in \calP, our reduction algorithm takes O(n + h \lg{n}) time. For the special case of \calS comprising of concave-in splinegons, we have devised another algorithm in which the reduction procedure does not rely on the structures used in the algorithm to compute a rectilinear shortest path in polygonal domain. As part of these, we have characterized few of the properties of rectilinear shortest paths amid splinegons which could be of independent interest

    Celebrating 40 Years of the Midwest Nursing Research Society

    Get PDF
    The Midwest Nursing Research Society (MNRS) recently held its 40th annual conference and celebrated four decades of nursing research in the Midwest. MNRS continues to be one of the largest nursing research societies in the United States. Over the years, a vast majority of programmatic initiatives included education and tangible support for novice and experienced nurse researchers. In this article, the background for development of MNRS is reviewed with examination of driving forces that led to its creation. Three past presidents, Dr. Joyce Fitzpatrick, the first President of MNRS (1980- 1981); Dr. Nancy Bergstrom, the eighth President (1993-1995); and Dr. Sally Lusk, the 14th President (2005-2007), discuss challenges, opportunities, and the exceptional progress made toward fostering excellence in nursing research for the Midwest and contributing to nursing science on a national and global scale. Lessons from the past as well as opportunities for the future are addressed

    Guarding art galleries by guarding witnesses

    Get PDF
    Let P be a simple polygon. We de ne a witness set W to be a set of points su h that if any (prospective) guard set G guards W, then it is guaranteed that G guards P . We show that not all polygons admit a nite witness set. If a fi nite minimal witness set exists, then it cannot contain any witness in the interior of P ; all witnesses must lie on the boundary of P , and there an be at most one witness in the interior of any edge. We give an algorithm to compute a minimal witness set for P in O(n2 log n) time, if such a set exists, or to report the non-existence within the same time bounds. We also outline an algorithm that uses a witness set for P to test whether a (prospective) guard set sees all points in P

    Minimizing the stabbing number of matchings, trees, and triangulations

    Full text link
    The (axis-parallel) stabbing number of a given set of line segments is the maximum number of segments that can be intersected by any one (axis-parallel) line. This paper deals with finding perfect matchings, spanning trees, or triangulations of minimum stabbing number for a given set of points. The complexity of these problems has been a long-standing open question; in fact, it is one of the original 30 outstanding open problems in computational geometry on the list by Demaine, Mitchell, and O'Rourke. The answer we provide is negative for a number of minimum stabbing problems by showing them NP-hard by means of a general proof technique. It implies non-trivial lower bounds on the approximability. On the positive side we propose a cut-based integer programming formulation for minimizing the stabbing number of matchings and spanning trees. We obtain lower bounds (in polynomial time) from the corresponding linear programming relaxations, and show that an optimal fractional solution always contains an edge of at least constant weight. This result constitutes a crucial step towards a constant-factor approximation via an iterated rounding scheme. In computational experiments we demonstrate that our approach allows for actually solving problems with up to several hundred points optimally or near-optimally.Comment: 25 pages, 12 figures, Latex. To appear in "Discrete and Computational Geometry". Previous version (extended abstract) appears in SODA 2004, pp. 430-43
    corecore