19 research outputs found

    Liquid droplet-like behaviour of whole casein aggregates adsorbed on graphite studied by nanoindentation with AFM

    No full text
    AFM measurements in the force volume mode were performed over the total penetration depth for different positions on casein aggregates adsorbed to a graphite surface in a liquid cell. The stiffness of the force curves was correlated to indentation depths, layer depth and lateral position within the aggregates with the aim of arriving at a credible explanation for the shapes of the force curves. The commonly used Hertz-based models did not fit the experimental data. The ratio between the height and diameter of the adsorbed casein aggregates was found to be linear, suggesting surface energy dominated liquid droplet behaviour. To investigate the possibility, numerical simulations were performed using the Surface Evolver, an interactive finite element program for the study of surfaces shaped by surface tension and other energies. Simulated force curves were in good agreement with experimental findings, both with respect to slope as a function of indentation as well as describing the variation with indentation position on the aggregate due to interfacial and geometric effects. By comparing the simulated force curves to the measurement data it was found that there would have been an interfacial energy equivalent to 10 mJ/m2

    Development of high-moisture meat analogues with hemp and soy protein using extrusion cooking

    No full text
    The interest in plant-based products is growing in Western countries, mostly due to health and environmental issues that arise from the consumption and production of animal-based food products. Many vegan products today are made from soy, but drawbacks include the challenges of cultivating soy in colder climates such as northern Europe. Therefore, the present study investigates whether industrial hemp (Cannabis sativa) could substitute soy in the production of high moisture meat analogues (HMMA). A twin screw co-rotating extruder was used to investigate to what extent hemp protein concentrate (HPC) could replace soy protein isolate (SPI) in HMMAs. The substitution levels of HPC were 20 wt%, 40 wt% and 60 wt%. Pasting properties and melting temperature of the protein powders were characterized by Rapid Visco Analyzer (RVA) and Differential Scanning Calorimeter (DSC), respectively and the produced HMMA was analysed by determining the texture and colour attributes. The results showed that it is possible to extrude a mixture with up to 60% HPC. HPC absorbed less water and needed a higher denaturing temperature compared to SPI. Increasing the moisture content by 5% would have resulted in a reduction of hardness and chewiness. The lightness (L* value) was found to be significantly higher in SPI product and decreased in the mixture with higher HPC (p < 0.05)

    Development and characterization of extrudates based on rapeseed and pea protein blends using high-moisture extrusion cooking

    No full text
    Rapeseed protein is not currently utilized for food applications, although it has excellent physicochemical, functional, and nutritional properties similar to soy protein. Thus, the goal of this study was to create new plant-based extrudates for application as high-moisture meat analogs from a 50:50 blend of rapeseed protein concentrate (RPC) and yellow pea isolate (YPI) using high-moisture-extrusion (HME) cooking with a twin-screw extruder to gain a better understanding of the properties of the protein powders and resulting extrudates. The effects of extrusion processing parameters such as moisture content (60%, 63%, 65%, 70%), screw speed (500, 700, and 900 rpm), and a barrel temperature profile of 40–80–130–150◦ C on the extrudates’ characteristics were studied. When compared to the effect of varying screw speeds, targeted moisture content had a larger impact on textural characteristics. The extrudates had a greater hardness at the same moisture content when the screw speed was reduced. The specific mechanical energy (SME) increased as the screw speed increased, while increased moisture content resulted in a small reduction in SME. The lightness (L*) of most samples was found to increase as the target moisture content increased from 60% to 70%. The RPC:YPI blend was equivalent to proteins produced from other sources and comparable to the FAO/WHO standard requirements

    Protein extraction from cold-pressed hempseed press cake : From laboratory to pilot scale

    Get PDF
    Abstract: During the production of industrial hempseed oil, a press cake is formed as a byproduct, which is often used as animal feed although it contains a high amount of protein that could be used for human consumption. Extracting this valuable protein would reduce food waste and increase the availability of plant-based protein. A protein extraction process based on the pH-shift method was adapted to improve the protein extraction yield from industrial hempseed press cake (HPC). Parameters such as alkali extraction pH, time, and temperature, as well as isoelectric precipitation pH, were investigated in laboratory scale and were thereafter carried out in a pilot trial to explore the suitability for future scale up. The phytic acid content of the extracted protein isolate was also analyzed to investigate any potential inhibitory effect on mineral absorption. A final protein yield of 60.6%, with a precipitated protein content of 90.3% (dw), was obtained using a constant alkali extraction pH of 10.5 for 1 h at room temperature, followed by precipitation at pH 5.5. The pilot trial showed promising results for the future production of industrial hemp protein precipitate on a larger scale, showing a protein yield of 57.0% and protein content of 90.8% (dw). The amount of phytic acid in the protein isolate produced in the optimal laboratory experiment and in the pilot trial was 0.595 and 0.557 g phytic acid/100 g dw, respectively, which is 83%–88% less than in the HPC. This is in the range of other plant-based protein sources (tofu, kidney beans, peas, etc.). Practical Application: Industrial hempseed press cake is a byproduct in the production of industrial hempseed oil, which is mostly used as animal feed, but has the potential to become an additional source of plant-based protein for human consumption with a suitable protein extraction method. The extracted hemp protein could be used to develop new plant-based dairy or meat analog products

    Extrusion of high-moisture meat analogues from hempseed protein concentrate and oat fibre residue

    No full text
    Hempseed protein concentrate (HPC) was extracted from hempseed press cake with a protein content of 85.7% and co-extruded with oat fibre residue (OFR) to produce high-moisture meat analogues (HMMA) at different moisture contents (60, 63, 66%), screw speeds (500, 700, 900) and temperature profiles (40-70-110-130 °C and 40-70-120-150 °C). The effect of extrusion processing parameters such as moisture content, screw speed, and different temperature profiles on the properties of the extrudates was investigated. The produced meat analogues had a fibrous structure and brown colour, which may be due to the derived hempseed protein. The specific mechanical energy (SME) required in this study was low and ranged from 63 to 185 kJ/kg. As moisture content increased, it was discovered that hardness, chewiness, and cutting strength values decreased. Nevertheless, cutting strength values increased when a higher temperature profile was used. By using a higher temperature profile, the protein was completely denatured, leading to the formation of stronger fibres in the meat analogues with a higher quality in terms of texture. The study demonstrated the possibility for both materials from underutilised side-streams to be converted into meat analogues, which would provide variety for the HMMA on the market
    corecore