1,494 research outputs found

    Chronic lung diseases:entangled in extracellular matrix

    Get PDF
    The extracellular matrix (ECM) is the scaffold that provides structure and support to all organs, including the lung; however, it is also much more than this. The ECM provides biochemical and biomechanical cues to cells that reside or transit through this micro-environment, instructing their responses. The ECM structure and composition changes in chronic lung diseases; how such changes impact disease pathogenesis is not as well understood. Cells bind to the ECM through surface receptors, of which the integrin family is one of the most widely recognised. The signals that cells receive from the ECM regulate their attachment, proliferation, differentiation, inflammatory secretory profile and survival. There is extensive evidence documenting changes in the composition and amount of ECM in diseased lung tissues. However, changes in the topographical arrangement, organisation of the structural fibres and stiffness (or viscoelasticity) of the matrix in which cells are embedded have an undervalued but strong impact on cell phenotype. The ECM in diseased lungs also changes in physical and biomechanical ways that drive cellular responses. The characteristics of these environments alter cell behaviour and potentially orchestrate perpetuation of lung diseases. Future therapies should target ECM remodelling as much as the underlying culprit cells

    Behaviour of heavy metals in soils

    Get PDF
    Fractions of Zn, Cd, Cu, Pb, Fe and Mn extractable with water, a salt solution and dilute acid, and residual fractions were determined in soils with raised contents of heavy metals, near zinc smelters, along a river formerly discharging heavy metals, and in a sewage farm. Special attention was paid to the role of oxides of Fe and Mn in the binding of other heavy metals.The theory of regular solid solutions was applied to exchange adsorption of ions in soil and some approximative equations of practical interest were derived. The possible role. of hydrolysis and the adsorption of hydrolysis products was studied. Ion exchange in soil was described in terms of sites of high and low selectivity (two-site model) giving rise to a decreasing free enthalpy of adsorption with increasing surface coverage (Freundlich behaviour).Cation-exchange experiments with Ca 2+, Zn 2+, Cd 2+, Cu 2+and Pb 2+on Winsum clay soil showed that heavy metals were subject to regular and selective (specific) exchange adsorption, and to superequivalent adsorption. A pronounced lowering of pH upon adsorption of heavy metals was assumed to be by desorption of weakly acidic protons or selective adsorption of hydrolysis products, in combination with a diminished acid-neutralizing capacity. Results may be of interest for environmental control of heavy metals

    Бароосмотичний аналіз як новий метод гідрогеологічних досліджень

    Get PDF
    Запропоновано методику бароосмотичного аналiзу гiдрогеологiчних даних для окремих свердловин, за якою визначаються величина бароосмотичного напору H2O у пластових (порових) водах i ступiнь вiдхилення їх вiд стану бароосмотичної рiвноваги на кiлькох водоносних горизонтах. Результати аналiзу для чотирьох свердловин з рiзних регiонiв пiдтвердили iснування вертикальних бароосмотичних потокiв у глинистих товщах усiх розрiзiв i дали змогу визначити напрями цих потокiв та виявити зони впливу особливих локальних гiдрогеологiчних процесiв.Methods of baroosmotic analysis of hydrogeological data for separate boreholes have been proposed. They can be applied to determine the baroosmotic pressure of H2O in formational (porous) waters and the degree of their defection from the state of baroosmotic balance at several water-bearing horizons. The results of analysis conducted at 4 boreholes from different regions have confirmed the existence of vertical baroosmotic flows in clayey units of all sections and have allowed us to determine the directions of these flows and to reveal the zones affected by specific local hydrogeological processes

    Towards standardization of human adipose-derived stromal cells secretomes

    Get PDF
    The secretome of adipose-derived stromal cells (ASC) is a heterogeneous mixture of components with a beneficial influence on cellular microenvironments. As such, it represents a cell-free alternative in regenerative medicine therapies. Pathophysiological conditions increase the therapeutic capacity of ASC and, with this, the benefits of the secretome. Such conditions can be partially mimicked in vitro by adjusting culturing conditions. Secretomics, the unbiased analysis of a cell secretome by mass spectrometry, is a powerful tool to describe the composition of ASC secretomes. In this proteomics databases review, we compared ASC secretomic studies to retrieve persistently reported proteins resulting from the most explored types of culturing conditions used in research, i.e., exposure to normoxia, hypoxia, or cytokines. Our comparisons identified only eight common proteins within ASC normoxic secretomes, no commonalities within hypoxic ASC secretomes, and only nine within secretomes of ASC exposed to proinflammatory cytokines. Within these, and regardless of the culturing condition that stimulated secretion, a consistent presence of extracellular matrix-related pathways associated with such proteins was identified. Confounders such as donors' age, sex, body mass index, the anatomical area where ASC were harvested, secretome collection method, data description, and how the data is shared with the scientific community are discussed as factors that might explain our outcomes. We conclude that standardization is imperative as the currently available ASC secretomic studies do not facilitate solid conclusions on the therapeutic value of different ASC secretomes.</p

    Towards standardization of human adipose-derived stromal cells secretomes

    Get PDF
    The secretome of adipose-derived stromal cells (ASC) is a heterogeneous mixture of components with a beneficial influence on cellular microenvironments. As such, it represents a cell-free alternative in regenerative medicine therapies. Pathophysiological conditions increase the therapeutic capacity of ASC and, with this, the benefits of the secretome. Such conditions can be partially mimicked in vitro by adjusting culturing conditions. Secretomics, the unbiased analysis of a cell secretome by mass spectrometry, is a powerful tool to describe the composition of ASC secretomes. In this proteomics databases review, we compared ASC secretomic studies to retrieve persistently reported proteins resulting from the most explored types of culturing conditions used in research, i.e., exposure to normoxia, hypoxia, or cytokines. Our comparisons identified only eight common proteins within ASC normoxic secretomes, no commonalities within hypoxic ASC secretomes, and only nine within secretomes of ASC exposed to proinflammatory cytokines. Within these, and regardless of the culturing condition that stimulated secretion, a consistent presence of extracellular matrix-related pathways associated with such proteins was identified. Confounders such as donors' age, sex, body mass index, the anatomical area where ASC were harvested, secretome collection method, data description, and how the data is shared with the scientific community are discussed as factors that might explain our outcomes. We conclude that standardization is imperative as the currently available ASC secretomic studies do not facilitate solid conclusions on the therapeutic value of different ASC secretomes.</p

    Towards standardization of human adipose-derived stromal cells secretomes

    Get PDF
    The secretome of adipose-derived stromal cells (ASC) is a heterogeneous mixture of components with a beneficial influence on cellular microenvironments. As such, it represents a cell-free alternative in regenerative medicine therapies. Pathophysiological conditions increase the therapeutic capacity of ASC and, with this, the benefits of the secretome. Such conditions can be partially mimicked in vitro by adjusting culturing conditions. Secretomics, the unbiased analysis of a cell secretome by mass spectrometry, is a powerful tool to describe the composition of ASC secretomes. In this proteomics databases review, we compared ASC secretomic studies to retrieve persistently reported proteins resulting from the most explored types of culturing conditions used in research, i.e., exposure to normoxia, hypoxia, or cytokines. Our comparisons identified only eight common proteins within ASC normoxic secretomes, no commonalities within hypoxic ASC secretomes, and only nine within secretomes of ASC exposed to proinflammatory cytokines. Within these, and regardless of the culturing condition that stimulated secretion, a consistent presence of extracellular matrix-related pathways associated with such proteins was identified. Confounders such as donors' age, sex, body mass index, the anatomical area where ASC were harvested, secretome collection method, data description, and how the data is shared with the scientific community are discussed as factors that might explain our outcomes. We conclude that standardization is imperative as the currently available ASC secretomic studies do not facilitate solid conclusions on the therapeutic value of different ASC secretomes.</p
    corecore