29,325 research outputs found

    Probabilistic Computability and Choice

    Get PDF
    We study the computational power of randomized computations on infinite objects, such as real numbers. In particular, we introduce the concept of a Las Vegas computable multi-valued function, which is a function that can be computed on a probabilistic Turing machine that receives a random binary sequence as auxiliary input. The machine can take advantage of this random sequence, but it always has to produce a correct result or to stop the computation after finite time if the random advice is not successful. With positive probability the random advice has to be successful. We characterize the class of Las Vegas computable functions in the Weihrauch lattice with the help of probabilistic choice principles and Weak Weak K\H{o}nig's Lemma. Among other things we prove an Independent Choice Theorem that implies that Las Vegas computable functions are closed under composition. In a case study we show that Nash equilibria are Las Vegas computable, while zeros of continuous functions with sign changes cannot be computed on Las Vegas machines. However, we show that the latter problem admits randomized algorithms with weaker failure recognition mechanisms. The last mentioned results can be interpreted such that the Intermediate Value Theorem is reducible to the jump of Weak Weak K\H{o}nig's Lemma, but not to Weak Weak K\H{o}nig's Lemma itself. These examples also demonstrate that Las Vegas computable functions form a proper superclass of the class of computable functions and a proper subclass of the class of non-deterministically computable functions. We also study the impact of specific lower bounds on the success probabilities, which leads to a strict hierarchy of classes. In particular, the classical technique of probability amplification fails for computations on infinite objects. We also investigate the dependency on the underlying probability space.Comment: Information and Computation (accepted for publication

    From energy-density functionals to mean field potentials: a systematic derivation

    Full text link
    In this paper we present a systematic method to solve the variational problem of the derivation of a self-consistent Kohn-Sham field from an arbitrary local energy functional. We illustrate this formalism with an application in nuclear physics and give the general mean field associated to the widely used Skyrme effective interaction

    Connected Choice and the Brouwer Fixed Point Theorem

    Get PDF
    We study the computational content of the Brouwer Fixed Point Theorem in the Weihrauch lattice. Connected choice is the operation that finds a point in a non-empty connected closed set given by negative information. One of our main results is that for any fixed dimension the Brouwer Fixed Point Theorem of that dimension is computably equivalent to connected choice of the Euclidean unit cube of the same dimension. Another main result is that connected choice is complete for dimension greater than or equal to two in the sense that it is computably equivalent to Weak K\H{o}nig's Lemma. While we can present two independent proofs for dimension three and upwards that are either based on a simple geometric construction or a combinatorial argument, the proof for dimension two is based on a more involved inverse limit construction. The connected choice operation in dimension one is known to be equivalent to the Intermediate Value Theorem; we prove that this problem is not idempotent in contrast to the case of dimension two and upwards. We also prove that Lipschitz continuity with Lipschitz constants strictly larger than one does not simplify finding fixed points. Finally, we prove that finding a connectedness component of a closed subset of the Euclidean unit cube of any dimension greater or equal to one is equivalent to Weak K\H{o}nig's Lemma. In order to describe these results, we introduce a representation of closed subsets of the unit cube by trees of rational complexes.Comment: 36 page
    corecore