25,002 research outputs found

    Bursts and Shocks in a Continuum Shell Model

    Full text link
    We study a "burst" event, i. e. the evolution of an initial condition having support only in a finite interval of k-space, in the continuum shell model due to Parisi. We show that the continuum equation without forcing or dissipation can be explicitly written in characteristic form and that the right and left moving parts can be solved exactly. When this is supplemented by the appropriate shock condition it is possible to find the asymptotic form of the burst.Comment: 15 pages, 2 eps figures included, Latex 2e. Contribution to the proceedings of the conference: Disorder and Chaos, in honour of Giovanni Paladin, September 22-24, 1997, in Rom

    Simple stochastic models showing strong anomalous diffusion

    Full text link
    We show that {\it strong} anomalous diffusion, i.e. \mean{|x(t)|^q} \sim t^{q \nu(q)} where qν(q)q \nu(q) is a nonlinear function of qq, is a generic phenomenon within a class of generalized continuous-time random walks. For such class of systems it is possible to compute analytically nu(2n) where n is an integer number. The presence of strong anomalous diffusion implies that the data collapse of the probability density function P(x,t)=t^{-nu}F(x/t^nu) cannot hold, a part (sometimes) in the limit of very small x/t^\nu, now nu=lim_{q to 0} nu(q). Moreover the comparison with previous numerical results shows that the shape of F(x/t^nu) is not universal, i.e., one can have systems with the same nu but different F.Comment: Final versio

    Ultrabright Linearly Polarized Photon Generation from a Nitrogen Vacancy Center in a Nanocube Dimer Antenna

    Get PDF
    We demonstrate an exceptionally bright photon source based on a single nitrogen- vacancy center (NV-center) in a nanodiamond (ND), placed in the nanoscale gap between two monocrystalline silver cubes in a dimer configuration. The system is operated near saturation at a stable photon rate of 850 kcps, while we further achieve strongly polarized emission and high single photon purity, evident by the measured auto-correlation with a g(2)(0)-value of 0.08. These photon source features are key parameters for quantum technological applications, such as secure communication based on quantum key distribution. The cube antenna is assembled with an atomic force microscope, which allows us to predetermine the dipole orientation of the NV-center and optimize cube positioning accordingly, while also tracking the evolution of emission parameters from isolated ND to the 1 and 2 cube configuration. The experiment is well described by finite element modelling, assuming an instrinsic quantum efficiency of 0.35. We attribute the large photon rate of the assembled photon source, to increased quantum efficiency of the NV-center and high antenna efficiency

    Half Semimetallic Antiferromagnetism in the Sr2_2CrTO6_6 System, T=Os, Ru

    Full text link
    Double perovskite Sr2_2CrOsO6_6 is (or is very close to) a realization of a spin-asymmetric semimetallic compensated ferrimagnet, according to first principles calculations. This type of near-half metallic antiferromagnet is an unusual occurrence, and more so in this compound because the zero gap is accidental rather than being symmetry determined. The large spin-orbit coupling (SOC) of osmium upsets the spin balance (no net spin moment without SOC): it reduces the Os spin moment by 0.27 ÎĽB\mu_B and induces an Os orbital moment of 0.17 ÎĽB\mu_B in the opposite direction. The effects combine (with small oxygen contributions) to give a net total moment of 0.54 ÎĽB\mu_B per cell in \scoo, reflecting a large impact of SOC in this compound. This value is in moderately good agreement with the measured saturation moment of 0.75 ÎĽB\mu_B. The value of the net moment on the Os ion obtained from neutron diffraction (0.73 ÎĽB\mu_B at low temperature) differs from the calculated value (1.14 ÎĽB\mu_B). Rather surprisingly, in isovalent Sr2_2CrRuO6_6 the smaller SOC-induced spin changes and orbital moments (mostly on Ru) almost exactly cancel. This makes Sr2_2CrRuO6_6 a "half (semi)metallic antiferromagnet" (practically vanishing net total moment) even when SOC is included, with the metallic channel being a small-band-overlap semimetal. Fixed spin moment (FSM) calculations are presented for each compound, illustrating how they provide different information than in the case of a nonmagnetic material. These FSM results indicate that the Cr moment is an order of magnitude stiffer against longitudinal fluctuations than is the Os moment.Comment: 6 page

    Exchange cotunneling through quantum dots with spin-orbit coupling

    Get PDF
    We investigate the effects of spin-orbit interaction (SOI) on the exchange cotunneling through a spinful Coulomb blockaded quantum dot. In the case of zero magnetic field, Kondo effect is shown to take place via a Kramers doublet and the SOI will merely affect the Kondo temperature. In contrast, we find that the breaking of time-reversal symmetry in a finite field has a marked influence on the effective Anderson, and Kondo models for a single level. The nonlinear conductance can now be asymmetric in bias voltage and may depend strongly on direction of the magnetic field. A measurement of the angle dependence of finite-field cotunneling spectroscopy thus provides valuable information about orbital, and spin degrees of freedom and their mutual coupling.Comment: 5 pages, 2 figure

    The Stability Balloon for Two-dimensional Vortex Ripple Patterns

    Full text link
    Patterns of vortex ripples form when a sand bed is subjected to an oscillatory fluid flow. Here we describe experiments on the response of regular vortex ripple patterns to sudden changes of the driving amplitude a or frequency f. A sufficient decrease of f leads to a "freezing" of the pattern, while a sufficient increase of f leads to a supercritical secondary "pearling" instability. Sufficient changes in the amplitude a lead to subcritical secondary "doubling" and "bulging" instabilities. Our findings are summarized in a "stability balloon" for vortex ripple pattern formation.Comment: 4 pages, 5 figure

    Experimental investigation of the Landau-Pomeranchuk-Migdal effect in low-Z targets

    Full text link
    In the CERN NA63 collaboration we have addressed the question of the potential inadequacy of the commonly used Migdal formulation of the Landau-Pomeranchuk-Migdal (LPM) effect by measuring the photon emission by 20 and 178 GeV electrons in the range 100 MeV - 4 GeV, in targets of LowDensityPolyEthylene (LDPE), C, Al, Ti, Fe, Cu, Mo and, as a reference target, Ta. For each target and energy, a comparison between simulated values based on the LPM suppression of incoherent bremsstrahlung is shown, taking multi-photon effects into account. For these targets and energies, we find that Migdal's theoretical formulation is adequate to a precision of better than about 5%, irrespective of the target substance.Comment: 8 pages, 13 figure
    • …
    corecore