674 research outputs found

    An individual patient-data comparison of combined modality therapy and ABVD alone for patients with limited-stage Hodgkin lymphoma

    Get PDF
    Background Treatment options for patients with nonbulky stage IA-IIA Hodgkin lymphoma include combined modality therapy (CMT) using doxorubicin, bleomycin, vinblastine and dacarbazine (ABVD) plus involved-field radiation therapy (IFRT), and chemotherapy with ABVD alone. There are no mature randomized data comparing ABVD with CMT using modern radiation techniques. Patients and methods Using German Hodgkin Study Group HD10/HD11 and NCIC Clinical Trials Group HD.6 databases, we identified 588 patients who met mutually inclusive eligibility criteria from the preferred arms of HD10 or 11 (n = 406) and HD.6 (n = 182). We evaluated time to progression (TTP), progression-free (PFS) and overall survival, including in three predefined exploratory subset analyses. Results With median follow-up of 91 (HD10/11) and 134 (HD.6) months, respective 8-year outcomes were for TTP, 93% versus 87% [hazard ratio (HR) 0.44, 95% confidence interval (CI) 0.24-0.78]; for PFS, 89% versus 86% (HR 0.71, 95% CI 0.42-1.18) and for overall survival, 95% versus 95% (HR 1.09, 95% CI 0.49-2.40). In the exploratory subset analysis including HD10 eligible patients who achieved complete response (CR) or unconfirmed complete response (CRu) after two cycles of ABVD, 8-year PFS was 87% (HD10) versus 95% (HD.6) (HR 2.8; 95% CI 0.64-12.5) and overall survival 96% versus 100%. In contrast, among those without CR/CRu after two cycles of ABVD, 8-year PFS was 88% versus 74% (HR 0.35; 95% CI 0.16-0.79) and overall survival 95% versus 91%, respectively (HR 0.42; 95% CI 0.12-1.44). Conclusions In patients with nonbulky stage IA-IIA Hodgkin lymphoma, CMT provides better disease control than ABVD alone, especially among those not achieving complete response after two cycles of ABVD. Within the follow-up duration evaluated, overall survivals were similar. Longer follow-up is required to understand the implications of radiation and chemotherapy-related late effects. Clinical trials The trials included in this analysis were registered at ClinicalTrials.gov: HD10 - NCT00265018, HD11 - NCT00264953, HD.6 - NCT0000256

    A histological and micro-CT investigation in to the effect of NGF and EGF on the periodontal, alveolar bone, root and pulpal healing of replanted molars in a rat model - a pilot study

    Get PDF
    Background: This study aims to investigate, utilising micro-computed tomography (micro-CT) and histology, whether the topical application of nerve growth factor (NGF) and/or epidermal growth factor (EGF) can enhance periodontal, alveolar bone, root and pulpal tissue regeneration while minimising the risk of pulpal necrosis, root resorption and ankylosis of replanted molars in a rat model. Methods: Twelve four-week-old male Sprague-Dawley rats were divided into four groups: sham, collagen, EGF and NGF. The maxillary right first molar was elevated and replanted with or without a collagen membrane impregnated with either the growth factors EGF or NGF, or a saline solution. Four weeks after replantation, the animals were sacrificed and the posterior maxilla was assessed using histological and micro-CT analysis. The maxillary left first molar served as the control for the corresponding right first molar. Results: Micro-CT analysis revealed a tendency for all replanted molars to have reduced root length, root volume, alveolar bone height and inter-radicular alveolar bone volume. It appears that the use of the collagen membrane had a negative effect while no positive effect was noted with the incorporation of EGF or NGF. Histologically, the incorporation of the collagen membrane was found to negatively affect pulpal, root, periodontal and alveolar bone healing with pulpal inflammation and hard tissue formation, extensive root resorption and alveolar bone fragmentation. The incorporation of EGF and NGF did not improve root, periodontal or alveolar bone healing. However, EGF was found to improve pulp vascularisation while NGF improved pulpal architecture and cell organisation, although not to the level of the control group.Conclusions: Results indicate a possible benefit on pulpal vascularisation and pulpal cell organisation following the incorporation of EGF and NGF, respectively, into the alveolar socket of replanted molars in the rat model. No potential benefit of EGF and NGF was detected in periodontal or root healing, while the use of a collagen membrane carrier was found to have a negative effect on the healing response
    corecore