859 research outputs found

    Deep Inelastic Neutrino Scattering and Fractal Models of Nucleon Structure Functions at Small X

    Get PDF

    Self-similarity and a Parameterization of Proton Structure Function at Small x

    Get PDF

    Versatility of magnetic Fe3O4 supported copper nanocomposite catalyst towards reduction of carbonyl and nitro compound

    Get PDF
    10-18Ferrite supported copper nanocomposite catalyst has been synthesized and characterized by TEM, SEM-EDS mapping, XRD, XPS and ICP-AES analysis. This nanocomposite is found to be more efficient and versatile towards carbonyl and nitro reduction under mild reaction condition with very good yield and turn over number. The catalyst is magnetically recoverable and also reusable for a minimum of four catalytic cycles

    Estimation of the effect of long-range transport on seasonal variation of aerosols over northeastern India

    Get PDF
    Spectral aerosol optical depth (AOD) at ten discrete channels in the visible and near IR regions were estimated over Dibrugarh, located in the northeastern part of India, using a ground-based multi-wavelength solar radiometer (MWR) from October 2001 to February 2006. The observations reveal seasonal variations with low values of AODs in retreating monsoon and high values in the pre-monsoon season. Generally the AODs are high at shorter wavelengths and low at longer wavelengths. AOD spectra are relatively steep in winter compared to that in the monsoon period. The average value of AOD lies between 0.44±0.07 and 0.56±0.07 at 500 nm during the pre-monsoon season and between 0.19±0.02 and 0.22±0.02 during re-treating monsoon at the same wavelength. Comparison of MWR observation on Dibrugarh with satellite (MODIS) observation indicates a good correspondence between ground-based and satellite derived AODs. The synoptic wind pattern obtained from National Centre for Medium Range Weather Forecasting (NCMRWF), India and back trajectory analysis using the NOAA Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT4) Model indicates that maximum contribution to aerosol extinction could be due to transport of pollutants from the industrialized and urban regions of India and large amounts of desert and mineral aerosols from the west Asian and Indian desert. Equal contributions from Bay-of- Bengal (BoB), in addition to that from the Indian landmass and west Asian desert leads to a further increase of AOD over the region of interest in the pre-monsoon seasons

    Possible impact of a major oil-well fire on aerosol optical depth at Dibrugarh

    Get PDF
    This article does not have an abstract

    MAC: A Meta-Learning Approach for Feature Learning and Recombination

    Full text link
    Optimization-based meta-learning aims to learn an initialization so that a new unseen task can be learned within a few gradient updates. Model Agnostic Meta-Learning (MAML) is a benchmark algorithm comprising two optimization loops. The inner loop is dedicated to learning a new task and the outer loop leads to meta-initialization. However, ANIL (almost no inner loop) algorithm shows that feature reuse is an alternative to rapid learning in MAML. Thus, the meta-initialization phase makes MAML primed for feature reuse and obviates the need for rapid learning. Contrary to ANIL, we hypothesize that there may be a need to learn new features during meta-testing. A new unseen task from non-similar distribution would necessitate rapid learning in addition reuse and recombination of existing features. In this paper, we invoke the width-depth duality of neural networks, wherein, we increase the width of the network by adding extra computational units (ACU). The ACUs enable the learning of new atomic features in the meta-testing task, and the associated increased width facilitates information propagation in the forwarding pass. The newly learnt features combine with existing features in the last layer for meta-learning. Experimental results show that our proposed MAC method outperformed existing ANIL algorithm for non-similar task distribution by approximately 13% (5-shot task setting)Comment: 20 pages, 3 figures, 2 graph

    Impact of energy-momentum conservation violation on the configuration of compact stars and their GW echoes

    Full text link
    This work investigates the impacts of energy-momentum conservation violation on the configuration of strange stars constraint with gravitational wave (GW) event GW190814 as well as eight recent observations of compact objects. The gravitational wave echoes from these interesting classes of compact objects are also calculated. To describe the matter of strange stars, we have used two different equations of state (EoSs): first an ad-hoc exotic EoS, the stiffer MIT Bag model and next realistic CFL phase of quark matter EoS. We choose Rastall gravity as a simple model with energy-momentum conservation violation with a set of model parameter values. Our results show that this gravity theory permits stable solutions of strange stars and the resulting structures can foster GW echoes. We illustrate the implication of the gravity theory and found that the negative values of the Rastall parameter result in more compact stellar configurations and lower GW echo frequency. With an increase in the Rastall parameter, both the compactness of the stellar configurations and echo time decrease. It is worth mentioning here that with the chosen set of some probable strange star candidates from observational data and also in light of GW 190814, we have evaluated the radii of stellar models. Also, the GW echo frequencies associated with strange stars are found to be in the range of 4158\approx 41-58 kHz for both cases.Comment: 8 figures and 4 table
    corecore