

Self－similarity and a parameterization of proton structure function at small \boldsymbol{x}

1）K Choudhury ${ }^{*}$ and Rupjyol，Gogon
Lepatiment al Physies Gauhati Univeraty（iuwahat－ 781 014．Awam，India
E．mall dhe＿phys（0）yahooco ill

 ＂I im int of the model as alvo suggested

Vor $\quad 15.45 \mathrm{I} 11753+11 \quad 1278-1 \quad 1760116$

Intıoduction

\because wmpled nacgular shapes ol nature possess a hidden pmetive called selt－simalatity $|1,2|$ It is not tamslatonal on Hhollu stmmetry，iather it is a symmeny with respect to soale ate 广户ル！me exhbiting self－similaity is defined through its I ，mimin dmenson，which is in general fraction，hence called Wd dmemson Cantor dust，Kuch cuive and Sierpinski gasket wine classical fiactals having faactal dimensions 063,126 II 3Si kespestively，which lie between Euclidean point and 1．ルら

Ith alli－similar nature of hadron multipaticle production心＇sses has been studied since nineteen eighties［3－9］ werer，these ideas did not attract much attention in mimporay phyums of deep inelastic lepton－hadron scattering ？（））2 when Lastovicha［10，11］proposed relevant formalism I I luncional form of the structure function $F_{2}\left(x, Q^{2}\right)$ at small pecilually，a desciuption of $F_{2}\left(x, Q^{2}\right)$ reflecting self－similarity
evicd with lour unknown parameters D_{0}, D_{1}, D_{2} and D_{3} to ut lernuned from data While one of them $\left(D_{0}\right)$ is just the imalization constant，the other ihree are identified as fractal lulloms which are fitted to HERA collider data［12，13｜The ulk parameterization as described in Ref $|10,11|$ provide an cllent description of the data which covers a iegion of four menlum tiansferred squared $0045 \leq \mathrm{Q}^{2} \leq 120 \mathrm{GeV}^{2}$ with a cut 001 to exclude the valence quark region．
＂ponding Authon

One aparent limatation of the above paameteration is that out of the four fitted parameters D_{0}, D_{1}, D_{2} and D_{2} ，one is negative （ $\mathrm{D}_{1}=-13$ ）As D_{7} is identitied as the sell－smitanty dimension associated with the magnification taiton $1+\frac{Q^{2}}{Q_{0}^{1}}$ ，a positive value will be more reasonable

In order to explore such a possibility，sometumes bach，it was suggested that $|14,15|$ the pooton is descuibed by a single Iractal dimension D ，characteirang ats selt－similat piopetty in analogy with classical monofractals More recently｜16｜，it is shown that in this limit，monotidetal dimension is closely related to more familar x－slope［17］or Pomeion inteicept［18－20］．Interestingly， such monotiactal nature in hadions is also advocated in reterences［21－23］within a variant of statistical quark model

However，our recent analysis｜16｜suggests that only in a Inmited x, Q^{2} ange of HERA data，this oveisimplified model appears to survive from the phenomenological point of view

The aim of the present papet is to repoit an alternative analysis of HERA data by suttable moditication of magnification factors as oceuried in the formalism wheie the estumated parameters are all positive

2．Formalism

As noted in Ref［10］，the self－sımilar objects are characteized by fractal dimension D and magnification factor M related by
$D=\frac{\log M^{\prime \prime}}{\log M}=\frac{\log \text { (number of self }- \text { simılar objects) }}{\log \text { (magnification factor) }}$
The dimension I) should be, by definition, positive so that the number of self-similar objects increases as the length scale is decreased Magnification factors are expected to fulfil some criteria They should be positive, non-zero and have no physical dimension In Ref [10], it is argued that while 1/r is one of the unique magnification factors, in Q^{2} space, two alternative forms $\left(\varphi_{0}^{2}+q^{2}\right) / Q_{0}^{2}$ and $Q_{0}^{2} /\left(\varphi_{0}^{2}+q^{2}\right)$ are possible

These two possibilities suggest two alternative forms of unintegrated parton densities $f,\left(t, q^{2}\right)$

$$
\begin{align*}
& \log f_{1}\left(x, q^{2}\right)=D_{1} \log 1 / x \log \left(Q_{0}^{2}+q^{2} / Q_{0}^{\prime}\right)+D_{2} \log 1 / r \\
& { }^{1} D_{1} \log \left(Q_{0}^{2}+\varphi^{2} / Q_{11}^{\prime}\right)+D_{0}^{\prime} \tag{2}
\end{align*}
$$

and $\log f_{1}\left(x, q^{2}\right)-D_{1} \log 1 / 1 \log \left(\varphi_{0}^{2} / Q_{0}^{2}+q^{2}\right)$

$$
\begin{equation*}
+D_{2} \log 1 / 1+D_{1} \log \left(Q_{0}^{\frac{1}{0}} / Q_{0}^{2}+q^{2}\right)+D_{0}^{\prime} \tag{3}
\end{equation*}
$$

In eqs (2) and (3), D_{1} is the dimensional correlation relating the x and q^{2} factors in the unintegrated parton density while D_{2} and D_{1} are the self-similarity dimensions associated with x and q^{2} factors respectively, D_{0} being the normalization constant Since the magnification factors should be positive, non-zero and dimensionless, a choice $\left(Q_{0}^{2}+\varphi^{2}\right) / Q_{0}^{2}$ and $Q_{0}^{\frac{1}{0}} /\left(Q_{0}^{\frac{1}{2}}+q^{2}\right)$, rather than q^{2} has been made Integratıng over q^{2}, one obtains the integrated parton densities $q_{1}\left(x, Q_{2}\right)$ as

$$
\begin{equation*}
q_{1}\left(x, Q^{2}\right)=\int_{u}^{\varphi^{2}} f_{1}\left(x q^{2}\right) d q^{2} \tag{4}
\end{equation*}
$$

Using the definition of structure function as

$$
\begin{equation*}
F_{2}\left(x, Q^{2}\right)=x \sum\left(c_{i}^{2}\left(q_{1}\left(x, Q^{2}\right)+q_{r}\left(x, Q^{2}\right)\right)\right) . \tag{5}
\end{equation*}
$$

we now get two alternative forms

$$
\begin{align*}
& F_{2}\left(x, Q^{2}\right)=\frac{\left(\exp D_{0}\right) Q_{0}^{7} r^{-l_{2}+1}}{1+D_{7}+D_{1} \log !_{1}^{\prime} x} \\
& \times\left(x^{-D_{1} \log \left(1+\varphi^{2} / Q_{11}^{2}\right)}\left(1+Q^{2} / Q_{0}^{2}\right)^{L_{1}+1}-1\right) \tag{6}
\end{align*}
$$

and $\quad F_{2}\left(x, Q^{2}\right)=\frac{\left(\exp D_{0}\right) Q_{0}^{2} x^{-12_{2}+1}}{1-D_{3}-D_{1} \log 1 / x}$

$$
\times\left(x^{-11_{1} \log \left(1+Q^{\prime} /\left(0_{0}^{2}\right)\right.}\left(1+\frac{Q^{2} / Q_{0}^{2}}{Q^{1 / 2+1}}-1\right)\right.
$$

While eq (6) is same as in Ref [10], eq (7) is the mannesc of the present paper, with the change of the magnification $l_{\text {atin }}$ It is to be noted that eq. (7) is obtainable from (6) br substitution of D_{1} and D_{3} instead of D_{1} and D_{7}

3. Results and discussion

For the HERA data | 12.13], we find two sets of fits one with $/$, 0 (lit 1) corresponding to the absence of dimensional correlaln relating $1 / x$ and q^{\prime} factors in the unintegrated pation denw and the other with $D_{1} \neq 0$ (fit 2) In Figures 1, 2, we have plolli

Figure 1. $F_{2}^{\prime}\left(x, Q^{2}\right)$ versus in in bins of Q^{2} with $D_{1}=0$ (eq) (8)) the bars represent total experimental error of ZEUS measurement whic quadratic sum of statistical and systematic errors
$F_{2}\left(x, Q^{2}\right)$ versus x in bins of Q^{2} as measured by Q^{2} data of $Z \square$ [13] and HI [12], respectively using eq (7) and considerimg D 0 Results of the fit yields

$$
D_{3}=14279 \pm 00584, Q_{0}^{2}=00427 \pm 00039 \mathrm{GeV}^{2}
$$

 is shalstand and wsicmalle errors
hee wher set corresponds to $D_{1} \neq 0$ (fit 2) In Figures 3 I we have shown the fitted curves using eq (7) for S/1:|and H 11 [12] data Results of the fit yields

$$
\begin{align*}
& I_{11}-06345+00145, O_{1}=02398 \pm 00125, \\
& l \quad 12581 \pm 00157, D_{7}-1.4352 \pm 00113, \\
& \Theta_{11}^{\prime} \quad 00498 \pm 00013 \mathrm{GeV}^{2} \tag{9}
\end{align*}
$$

lable 1. we have recorded the estımated χ^{-}For pill ison, we also record in Table 2, the set of parameters letermined in Kef [10]
W is evident from figures, we are able to explain the : A data of structure function at low \mathbf{x} without abandoning ${ }^{\text {wisitivity }}$ of any of the fractal dimensions This we have eved through suitable redefinition of one of the nification factors occurred in the formalism A study of (able I also shows that the fit with parameter D_{1} fixed to (${ }^{\text {it }} 1$) has an almost twice better value of χ^{2} than the "ilh $D_{\text {, parameter relaxed (fit } 2 \text {), suggesting }}$ tomenological preference of the former Further, due to metry of eqs (6) and (7), $D_{1} \rightarrow-D_{1}$ and $D_{3} \rightarrow-D_{3}$. expects that the obtained parameters should be identical pt for the change of sign of D_{3} and D_{1} A comparison of le 2 and fits of eqs (8) and (9) however, show that the

Figure 3. $f_{2}^{\prime}\left(x, Q^{2}\right)$ versus x in bins of Q^{2} with $L_{1} \neq 0$ (eq (9)) the error bars represent total experimental error of ZEUS measurement which are quadratic sum of statistical and systematic errors

Table I Results of the fil of our nnalysis

1 It	D_{11}	$1)$	D_{2}	D_{1}	$Q_{11}{ }^{2}$	γ^{2}	χ^{2} / dol
All lit	$06145+00145$	1)2398+0)0125	$12581+00157$	14352 ± 00113	$00498+00013$	272743	1366
1), lived	0) 490140041	0	12009 ± 0039	14279100584	00427 ± 00039	142281	0071

Iable 2 Results of the fit of Kel |lol

111	1_{0}	$)_{1}$	$1)$,	$1)_{1}$	$Q_{10}{ }^{2}$	x^{2}	x^{2} / dod
All lit	$0319+01.45$	007110001	$1013+001$	$-12 \times 7+001$	0062 ± 001	1366	() R2
H,fixed	() 52.100014	0) $074+0001$	(1)00nt)	-12820001	0051 ± 0002	1384	11 x ?

parameters diflet significantly and $[$, even has opposite sign ($\mathrm{e}^{\prime} \mathrm{D}_{1}$ is still posilive) the difference in the measured values of the parameters is presumably due to the diflerence of choice of φ_{0}^{\prime} compared with Refs [10,11]
L.et us make a lew comments on unproving the model 'T his formalism developed in Ref [10.11] as well as in the present woik is based on the relation (4) relating the unntegrated and integrated qualk density As the unintegrated quark densities are by detinition, dimensionless (topolugical dimension $\tau=0$ (eqs (2) and (3)). the integrated quarh density gix Q^{2}) will have dimension of GeV^{2} or measure ol inverse area as is evident fiom the occurience of $\left(_{0}^{2}\right.$ in eqs (6) and (7) I'his can be avoided if we use the relation [24,25]

$$
\varphi_{1}\left(x, Q^{2}\right)=\int_{0}^{0} \frac{r_{1}\left(1, \varphi^{2}\right)}{q^{2}}-d \psi^{2}
$$

instead of (4), so that both the unintegrated and integated y density are dimensionless Such a possibility is curiently " study $\mid 26]$

Fimally, we comment on negativity of $D_{;}$itsell dimensonal analysis, it is agued [II| that it is not l, bur combination $\left.D_{f}=I+D_{3}+I\right)_{1} \log (I / i)$ which should positive For $D_{3} \approx-12$ (lable 2), this condition in Retlit satisfied so long as x < 001 But this inference is strictis [26] only if the un-integrated quark density has dimon

Figure $4 \quad I_{\text {, }}\left(Q^{\prime}\right)$ verwis \times ill bins of Q^{\prime} with $D_{1} \neq 0$ (eq (9)) The erroi bars represent total experimental error of H incasurement whith quadratic sum of vatistical and swatematic errors

1 wintrary to eqs (2) and (3) For dimensionless unrimited qualk density, the corresponding limit on x is 10 ${ }^{\circ}$ bc ond the present HERA regime $62 \times 10^{-7}<x<02 \mathrm{~A}$:nloce D_{1} is tree trom such small x constraint as suggested in peresent papei

hnowledgment

Hank. Ir T Lastovicka for usetul correspondences and Dr "I halar for helptul collaboration in the initial stage of the |t

[II] T Latovickia Ph I) Thew DESSY THESIS-2004-016. (Humbaldt University Berlin) (2007)

|l3| ZEIJS J Hrietweg et al Phw La'tl B487 57 (2000) hep-al/ 0005018
 Reveraich ill Norih Eav (Physich Aladimy ol the North Eall) p63 (2004)

 (2003)

|19| A Dounachu and I V Lamdhotl P/w Lét B437 dis (199k)
[20| J K ('udell A Donnachic and P V Lamdhull hep phavelis?
 J Mod I'h, A15 2053 (2000)
 1 Mord Phw Al6 201 (200)
 J Mod Phr: A174939 (20002)
 (1907)
[25] G Gustatson hep-ph/f13/2:17
[20] D) K ('houdhury and Rupfyou (oggon (under prepadiam)

