1,198 research outputs found

    Control of fine-structure splitting and excitonic binding energies in selected individual InAs/GaAs quantum dots

    Get PDF
    A systematic study of the impact of annealing on the electronic properties of single InAs/GaAs quantum dots (QDs) is presented. Single QD cathodoluminescence spectra are recorded to trace the evolution of one and the same QD over several steps of annealing. A substantial reduction of the excitonic fine-structure splitting upon annealing is observed. In addition, the binding energies of different excitonic complexes change dramatically. The results are compared to model calculations within eight-band k.p theory and the configuration interaction method, suggesting a change of electron and hole wave function shape and relative position.Comment: 4 pages, 4 figure

    Evaluation épidémiologique du programme valaisan de dépistage du cancer du sein, 2013-2017

    Get PDF
    Le cancer du sein est le cancer le plus frĂ©quent et le plus mortel chez les femmes en Valais et en Suisse. Chaque annĂ©e 250 Valaisannes en sont atteintes et 50 en dĂ©cĂšdent. Cependant, tant l’incidence que la mortalitĂ© du cancer du sein diminuent en Valais chez les femmes dans la tranche d’ñge de 50 Ă  69 ans. Le programme valaisan de dĂ©pistage du cancer du sein existe depuis octobre 1999 et a pour but de promouvoir, organiser et rĂ©aliser l’action de dĂ©pistage auprĂšs de la population fĂ©minine du canton entre 50 et 70 ans. Des Ă©valuations indĂ©pendantes et rĂ©guliĂšres permettent de s’assurer que la qualitĂ© et l’efficacitĂ© d’un programme de dĂ©pistage rĂ©pondent Ă  des normes internationales, pĂ©riodiquement rĂ©visĂ©es. L’évaluation Ă©pidĂ©miologique du programme valaisan a Ă©tĂ© confiĂ©e au dĂ©partement EpidĂ©miologie et systĂšmes de santĂ© du Centre universitaire de mĂ©decine gĂ©nĂ©rale et santĂ© publique Ă  Lausanne (UnisantĂ©)a, en charge de l’évaluation de nombreux programmes de dĂ©pistage en Suisse. Ce rapport dĂ©crit l’activitĂ© du programme entre 2013 et 2017 (section 2) et analyse son utilisation (section 3), sa qualitĂ© (section 4) et son efficacitĂ© (section 6). Il traite aussi, pour la premiĂšre fois, les Ă©chographies complĂ©mentaires recommandĂ©es pour seins trĂšs denses (section 5). Outre les indicateurs usuels de performance, l’analyse couvre certains effets indĂ©sirables du dĂ©pistage comme les rĂ©sultats faussement positifs ou les cancers survenant entre deux examens de dĂ©pistage (cancers d’intervalle). Les rĂ©sultats prĂ©sentĂ©s dans ce rapport se basent sur 63'382 mammographies et plus de 34'000 femmes

    Fatigue analysis-based numerical design of stamping tools made of cast iron

    Get PDF
    This work concerns stress and fatigue analysis of stamping tools made of cast iron with an essentially pearlitic matrix and containing foundry defects. Our approach consists at first, in coupling the stamping numerical processing simulations and structure analysis in order to improve the tool stiffness geometry for minimizing the stress state and optimizing their fatigue lifetime. The method consists in simulating the stamping process by considering the tool as a perfect rigid body. The estimated contact pressure is then used as boundary condition for FEM structure loading analysis of the tool. The result of this analysis is compared with the critical stress limit depending on the automotive model. The acceptance of this test allows calculating the fatigue lifetime of the critical zone by using the S–N curve of corresponding load ratio. If the prescribed tool life requirements are not satisfied, then the critical region of the tool is redesigned and the whole simulation procedures are reactivated. This method is applied for a cast iron EN-GJS-600-3. The stress-failure (S–N) curves for this material is determined at room temperature under push pull loading with different load ratios R0σmin/σmax0−2, R0−1 and R00.1. The effects of the foundry defects are determined by SEM observations of crack initiation sites. Their presence in tested specimens is associated with a reduction of fatigue lifetime by a factor of 2. However, the effect of the load ratio is more important

    The potential of radar-based ensemble forecasts for flash-flood early warning in the southern Swiss Alps

    Get PDF
    This study explores the limits of radar-based forecasting for hydrological runoff prediction. Two novel radar-based ensemble forecasting chains for flash-flood early warning are investigated in three catchments in the southern Swiss Alps and set in relation to deterministic discharge forecasts for the same catchments. The first radar-based ensemble forecasting chain is driven by NORA (Nowcasting of Orographic Rainfall by means of Analogues), an analogue-based heuristic nowcasting system to predict orographic rainfall for the following eight hours. The second ensemble forecasting system evaluated is REAL-C2, where the numerical weather prediction COSMO-2 is initialised with 25 different initial conditions derived from a four-day nowcast with the radar ensemble REAL. Additionally, three deterministic forecasting chains were analysed. The performance of these five flash-flood forecasting systems was analysed for 1389 h between June 2007 and December 2010 for which NORA forecasts were issued, due to the presence of orographic forcing. A clear preference was found for the ensemble approach. Discharge forecasts perform better when forced by NORA and REAL-C2 rather then by deterministic weather radar data. Moreover, it was observed that using an ensemble of initial conditions at the forecast initialisation, as in REAL-C2, significantly improved the forecast skill. These forecasts also perform better then forecasts forced by ensemble rainfall forecasts (NORA) initialised form a single initial condition of the hydrological model. Thus the best results were obtained with the REAL-C2 forecasting chain. However, for regions where REAL cannot be produced, NORA might be an option for forecasting events triggered by orographic precipitation

    Complement component 4A protein levels are negatively related to frontal volumes in patients with schizophrenia spectrum disorders

    Get PDF
    Background: Excessive C4A-gene expression may result in increased microglia-mediated synaptic pruning. As C4A overexpression is observed in schizophrenia spectrum disorders (SSD), this mechanism may account for the altered brain morphology (i.e. reduced volume and cortical thickness) and cognitive symptoms that characterize SSD. Therefore, this study investigates the association of C4A serum protein levels with brain morphology and cognition, and in particular whether this association differs between recent-onset SSD (n = 69) and HC (n = 40). Methods: Serum C4A protein levels were compared between groups. Main outcomes included total gray matter volume, mean cortical thickness and cognitive performance. Regression analysis on these outcomes included C4A level, group (SSD vs. HC), and C4A*Group interactions. All statistical tests were corrected for age, sex, BMI, and antipsychotic medication dose. Follow-up analyses were performed on separate brain regions and scores on cognitive sub-tasks. Results: The group difference in C4A levels was not statistically significant (p = 0.86). The main outcomes did not show a significant interaction effect (p &gt; 0.13) or a C4A main effect (p &gt; 0.27). Follow-up analyses revealed significant interaction effects for the left medial orbitofrontal and left frontal pole volumes (p &lt; 0.001): C4A was negatively related to these volumes in SSD, but positively in HC. Conclusion: This study demonstrated that C4A was negatively related to – specifically – frontal brain volumes in SSD, but this relation was inverse for HC. The results support the hypothesis of complement-mediated brain volume reduction in SSD. The results also suggest that C4A has a differential association with brain morphology in SSD compared to HC.</p

    Tuning the stacking behaviour of a 2D covalent organic framework through non-covalent interactions

    Get PDF
    Two-dimensional covalent organic frameworks (COFs) are crystalline porous materials composed of organic building blocks that are connected via covalent bonds within their layers, but through non-covalent interactions between the layers. The exact stacking sequence of the layers is of paramount importance for the optoelectronic, catalytic and sorption properties of these polymeric materials. The weak interlayer interactions lead to a variety of stacking geometries in COFs, which are both hard to characterize and poorly understood due to the low levels of crystallinity. Therefore, detailed insights into the stacking geometry in COFs is still largely elusive. In this work we show that the geometric and electronic features of the COF building blocks can be used to guide the stacking behavior of two related 2D imine COFs (TBI-COF and TTI-COF), which either adopt an averaged "eclipsed'' structure with apparent zero-offset stacking or a unidirectionally slip-stacked structure, respectively. These structural features are confirmed by XRPD and TEM measurements. Based on theoretical calculations, we were able to pinpoint the cause of the uniform slip-stacking geometry and high crystallinity of TTI-COF to the inherent self-complementarity of the building blocks and the resulting donor-acceptor-type stacking of the imine bonds in adjacent layers, which can serve as a more general design principle for the synthesis of highly crystalline COFs

    The social affordances of flashpacking: exploring the mobility nexus of travel and communication

    Get PDF
    The proliferation of digital devices and online social media and networking technologies has altered the backpacking landscape in recent years. Thanks to the ready availability of online communication, travelers are now able to stay in continuous touch with friends, family and other travelers while on the move. This article introduces the practice of ‘flashpacking’ to describe this emerging trend and interrogates the patterns of connection and disconnection that become possible as corporeal travel and social technologies converge. Drawing on the concepts of ‘assemblages’ and ‘affordances’, we outline several aspects of this new sociality: virtual mooring, following, collaborating, and (dis)connecting. The conclusion situates this discussion alongside broader questions about the shifting nature of social life in an increasingly mobile and mediated world and suggests directions for future research at the intersection of tourism and technology

    Optical frequency comb Fourier transform spectroscopy of formaldehyde in the 1250 to 1390 cm−1 range: Experimental line list and improved MARVEL analysis

    Get PDF
    We use optical frequency comb Fourier transform spectroscopy to record high-resolution, low-pressure, room-temperature spectra of formaldehyde (H212C16O) in the range of 1250 to 1390 cm−1. Through line-by-line fitting, we retrieve line positions and intensities of 747 rovibrational transitions: 558 from the Îœ6 band, 129 from the Îœ4 band, and 14 from the Îœ3 band, as well as 46 from four different hot bands. We incorporate the accurate and precise line positions (0.4 MHz median uncertainty) into the MARVEL (measured active vibration-rotation energy levels) analysis of the H2CO spectrum. This increases the number of MARVEL-predicted energy levels by 82 and of rovibrational transitions by 5382, and substantially reduces uncertainties of MARVEL-derived H2CO energy levels over a large range: from pure rotational levels below 200 cm−1 up to multiply excited vibrational levels at 6000 cm−1. This work is an important step toward filling the gaps in formaldehyde data in the HITRAN database
    • 

    corecore