289 research outputs found
Role of retardation in 3-D relativistic equations
Equal-time Green's function is used to derive a three-dimensional integral
equation from the Bethe-Salpeter equation. The resultant equation, in the
absence of anti-particles, is identical to the use of time-ordered diagrams,
and has been used within the framework of coupling to study the
role of energy dependence and non-locality when the two-body potential is the
sum of -exchange and crossed exchange. The results show that
non-locality and energy dependence make a substantial contribution to both the
on-shell and off-shell amplitudes.Comment: 17 pages, RevTeX; 8 figures. Accepted for publication in Phys. Rev.
C56 (Nov. 97
Relativistic three-particle scattering equations
We derive a set of relativistic three-particle scattering equations in the
three-particle c.m. frame employing a relativistic three-particle propagator
suggested long ago by Ahmadzadeh and Tjon in the c.m. frame of a two-particle
subsystem. We make the coordinate transformation of this propagator from the
c.m. frame of the two-particle subsystem to the three-particle c.m. frame. We
also point out that some numerical applications of the Ahmadzadeh and Tjon
propagator to the three-nucleon problem use unnecessary nonrelativistic
approximations which do not simplify the computational task, but violate
constraints of relativistic unitarity and/or covariance.Comment: 5pages, text and one ps figure (in revtex) include
Winter Feeding of Elk in the Greater Yellowstone Ecosystem and its Effects on Disease Dynamics
Providing food to wildlife during periods when natural food is limited results in aggregations that may facilitate disease transmission. This is exemplified in western Wyoming where institutional feeding over the past century has aimed to mitigate wildlifeâlivestock conflict and minimize winter mortality of elk (Cervus canadensis). Here we review research across 23 winter feedgrounds where the most studied disease is brucellosis, caused by the bacterium Brucella abortus. Traditional veterinary practices (vaccination, test-and-slaughter) have thus far been unable to control this disease in elk, which can spill over to cattle. Current disease-reduction efforts are being guided by ecological research on elk movement and density, reproduction, stress, co-infections and scavengers. Given the right tools, feedgrounds could provide opportunities for adaptive management of brucellosis through regular animal testing and population-level manipulations. Our analyses of several such manipulations highlight the value of a researchâmanagement partnership guided by hypothesis testing, despite the constraints of the sociopolitical environment. However, brucellosis is now spreading in unfed elk herds, while other diseases (e.g. chronic wasting disease) are of increasing concern at feedgrounds. Therefore experimental closures of feedgrounds, reduced feeding and lower elk populations merit consideration
Light-Front Bethe-Salpeter Equation
A three-dimensional reduction of the two-particle Bethe-Salpeter equation is
proposed. The proposed reduction is in the framework of light-front dynamics.
It yields auxiliary quantities for the transition matrix and the bound state.
The arising effective interaction can be perturbatively expanded according to
the number of particles exchanged at a given light-front time. An example
suggests that the convergence of the expansion is rapid. This result is
particular for light-front dynamics. The covariant results of the
Bethe-Salpeter equation can be recovered from the corresponding auxiliary
three-dimensional ones. The technical procedure is developed for a two-boson
case; the idea for an extension to fermions is given. The technical procedure
appears quite practicable, possibly allowing one to go beyond the ladder
approximation for the solution of the Bethe-Salpeter equation. The relation
between the three-dimensional light-front reduction of the field-theoretic
Bethe-Salpeter equation and a corresponding quantum-mechanical description is
discussed.Comment: 42 pages, 5 figure
Persistent, depth-intensified mixing during the Western Mediterranean Transition's initial stages
Piñeiro, S., GonzĂĄlez-Pola, C., FernĂĄndez-DĂaz, J. M., Naveira-Garabato, A. C., SĂĄnchez-Leal, R., Puig, P., et al. (2021). Persistent, depth-intensified mixing during the Western Mediterranean Transition's initial stages. Journal of Geophysical Research: Oceans, 126, e2020JC016535. https://doi.org/10.1029/2020JC016535. © 2020. American Geophysical Union. All Rights Reserved.© 2020. American Geophysical Union. All Rights Reserved.
Major deep-convection activity in the northwestern Mediterranean during winter 2005 triggered the formation of a complex anomalous deep-water structure that substantially modified the properties of the Western Mediterranean deep layers. Since then, evolution of this thermohaline structure, the so-called Western Mediterranean Transition (WMT), has been traced through a regularly sampled hydrographic deep station located on the outer continental slope of Minorca Island. A rapid erosion of the WMT's near-bottom thermohaline signal was observed during 2005â2007. The plausible interpretation of this as local bottom-intensified mixing motivates this study. Here, the evolution of the WMT structure through 2005â2007 is reproduced by means of a one-dimensional diffusion model including double-diffusive mixing that allows vertical variation of the background mixing coefficient and includes a source term to represent the lateral advection of deep-water injections from the convection area. Using an optimization algorithm, a best guess for the depth-dependent background mixing coefficient is obtained for the study period. WMT evolution during its initial stages is satisfactorily reproduced using this simple conceptual model, indicating that strong depth-intensified mixing (K â (z) â 22 Ă 10â4 m2 sâ1; z âȘ 1,400 dbar) is a valid explanation for the observations. Extensive hydrographic and current observations gathered over the continental slope of Minorca during winter 2018, the first deep-convective winter intensively sampled in the region, provide evidence of topographically localized enhanced mixing concurrent with newly formed dense waters flowing along-slope toward the Algerian sub-basin. This transport-related boundary mixing mechanism is suggested to be a plausible source of the water-mass transformations observed during the initial stages of the WMT off Minorca.CTM2014-54374-R. BES-2015-074316.VersiĂłn del editor3,17
Transcription, one allele at a time
A recent study presents a technique allowing one to image transcription from a single gene copy in live cells, and highlights the dynamic nature of transcriptional regulation
Relativistic bound-state equations in three dimensions
Firstly, a systematic procedure is derived for obtaining three-dimensional
bound-state equations from four-dimensional ones. Unlike ``quasi-potential
approaches'' this procedure does not involve the use of delta-function
constraints on the relative four-momentum. In the absence of negative-energy
states, the kernels of the three-dimensional equations derived by this
technique may be represented as sums of time-ordered perturbation theory
diagrams. Consequently, such equations have two major advantages over
quasi-potential equations: they may easily be written down in any Lorentz
frame, and they include the meson-retardation effects present in the original
four-dimensional equation. Secondly, a simple four-dimensional equation with
the correct one-body limit is obtained by a reorganization of the generalized
ladder Bethe-Salpeter kernel. Thirdly, our approach to deriving
three-dimensional equations is applied to this four-dimensional equation, thus
yielding a retarded interaction for use in the three-dimensional bound-state
equation of Wallace and Mandelzweig. The resulting three-dimensional equation
has the correct one-body limit and may be systematically improved upon. The
quality of the three-dimensional equation, and our general technique for
deriving such equations, is then tested by calculating bound-state properties
in a scalar field theory using six different bound-state equations. It is found
that equations obtained using the method espoused here approximate the wave
functions obtained from their parent four-dimensional equations significantly
better than the corresponding quasi-potential equations do.Comment: 28 pages, RevTeX, 6 figures attached as postscript files. Accepted
for publication in Phys. Rev. C. Minor changes from original version do not
affect argument or conclusion
Nucleon-Nucleon Optical Model for Energies to 3 GeV
Several nucleon-nucleon potentials, Paris, Nijmegen, Argonne, and those
derived by quantum inversion, which describe the NN interaction for T-lab below
300$ MeV are extended in their range of application as NN optical models.
Extensions are made in r-space using complex separable potentials definable
with a wide range of form factor options including those of boundary condition
models. We use the latest phase shift analyses SP00 (FA00, WI00) of Arndt et
al. from 300 MeV to 3 GeV to determine these extensions. The imaginary parts of
the optical model interactions account for loss of flux into direct or resonant
production processes. The optical potential approach is of particular value as
it permits one to visualize fusion, and subsequent fission, of nucleons when
T-lab above 2 GeV. We do so by calculating the scattering wave functions to
specify the energy and radial dependences of flux losses and of probability
distributions. Furthermore, half-off the energy shell t-matrices are presented
as they are readily deduced with this approach. Such t-matrices are required
for studies of few- and many-body nuclear reactions.Comment: Latex, 40 postscript pages including 17 figure
Infinite Nuclear Matter on the Light Front: Nucleon-Nucleon Correlations
A relativistic light front formulation of nuclear dynamics is developed and
applied to treating infinite nuclear matter in a method which includes the
correlations of pairs of nucleons: this is light front Brueckner theory. We
start with a hadronic meson-baryon Lagrangian that is consistent with chiral
symmetry. This is used to obtain a light front version of a one-boson-exchange
nucleon-nucleon potential (OBEP). The accuracy of our description of the
nucleon-nucleon (NN) data is good, and similar to that of other relativistic
OBEP models. We derive, within the light front formalism, the Hartree-Fock and
Brueckner Hartree-Fock equations. Applying our light front OBEP, the nuclear
matter saturation properties are reasonably well reproduced. We obtain a value
of the compressibility, 180 MeV, that is smaller than that of alternative
relativistic approaches to nuclear matter in which the compressibility usually
comes out too large. Because the derivation starts from a meson-baryon
Lagrangian, we are able to show that replacing the meson degrees of freedom by
a NN interaction is a consistent approximation, and the formalism allows one to
calculate corrections to this approximation in a well-organized manner. The
simplicity of the vacuum in our light front approach is an important feature in
allowing the derivations to proceed. The mesonic Fock space components of the
nuclear wave function are obtained also, and aspects of the meson and nucleon
plus-momentum distribution functions are computed. We find that there are about
0.05 excess pions per nucleon.Comment: 39 pages, RevTex, two figure
Solution of the Bethe-Salpeter equation for pion-nucleon scattering
A relativistic description of pion-nucleon scattering based on the
four-dimensional Bethe-Salpeter equation is presented. The kernel of the
equation consists of s- and u-channel nucleon and delta pole diagrams, as well
as rho and sigma exchange in the t-channel. The Bethe-Salpeter equation is
solved by means of a Wick rotation, and good fits are obtained to the s- and
p-wave phase shifts up to 360 MeV pion laboratory energy. The coupling
constants determined by the fits are consistent with the commonly accepted
values in the literature.Comment: 34 pages, RevTeX; 7 figures. Several references added, a few typos
corrected. Accepted for publication in Physical Review
- âŠ