12 research outputs found

    Modelling the runoff response in the Mulde catchment (Germany)

    Get PDF
    International audienceThe paper presents two different levels of regionalization used to represent the spatial distribution of landscape parameters for the hydrological modelling of the Mulde. The aim of this investigation was to find out how the discretisation level affects quality of modelling with the hydrological modelling system J2000. Furthermore we improved our understanding of the applicability and reliability of the distributed model J2000 on the macro-scale. Spatial information was aggregated in two different discretisation levels: subbasins (SB) and hydrological response polygons (HRP). A J2000 simulation was carried out for both discretisation levels based on a 1 year calibration and a 3 year validation period. Simulations performed well for both levels of spatial discretisation. The results seemed to be better in the more complex discretisation approach, where the Nash-Sutcliffe coefficient was higher. We can conclude that our first results show more accurate simulations produced by the HRP discretisation approach, the visual inspection shows a better application of the SB approach to the reproduction of the base flow

    Model system development and uncertainty for the provisionary management of extreme floods in large river basins

    No full text
    International audienceA research project is introduced in which a modelling system is being developed to quantify risks of extreme flooding in large river basins. In the system, computer models and modules are coupled to simulate the functional chain: hydrology - hydraulics - polder diversion - dyke failure - flooding - damage estimate - risk assessment. In order to reduce uncertainty in flood frequency analyses, data sets are complimented with information from historical chronicles and artwork. Probable maximum precipitation and discharge are calculated to indicate upper bounds of meteorological and hydrological extremes. Uncertainty analysis is investigated for different degrees of model complexity and compared at different basin scales

    Biological versus geochemical control and environmental change drivers of the base metal budgets of a tropical montane forest in Ecuador during 15 years

    No full text
    To assess the susceptibility of the base metal budget of a remote tropical montane forest in Ecuador to environmental change, we determined the extent of biological control of base metal fluxes and explored the impact of atmospheric inputs and precipitation, considered as potential drivers of ecosystem change, on the base metal fluxes. We quantified all major base metal fluxes in a ca. 9.1 ha forested catchment from 1998 to 2013. Mean (±s.d.) annual flux to the soil via throughfall + stemflow + litterfall was 13800 ± 1500 mg m−2 Ca, 19000 ± 1510 mg m−2 K, 4690 ± 619 mg m−2 Mg and 846 ± 592 mg m−2 Na of which 22 ± 6, 45 ± 16, 39 ± 10 and 84 ± 33%, respectively, were leached to below the organic layer. The mineral soil retained 79–94% of this Ca, K and Mg, while Na was released. Weathering rates estimated with three different approaches ranged from not detected (ND) to 504 mg m−2 year−1 Ca, ND-1770 mg m−2 year−1 K, 287–597 mg m−2 year−1 Mg and 403–540 mg m−2 year−1 Na. The size of mainly biologically controlled aboveground fluxes of Ca, K and Mg was 1–2 orders of magnitude larger than that of mainly geochemically controlled fluxes (sorption to soil and weathering). The elemental catchment budgets (total deposition − streamflow) were positive for Ca (574 ± 893 mg m−2) and K (1330 ± 773 mg m−2), negative for Na (−370 ± 1300 mg m−2) and neutral for Mg (1.89 ± 304 mg m−2). Our results demonstrate that biological processes controlled element retention for Ca, K and Mg in the biological part of the ecosystem. This was different for Na, which was mainly released by weathering from the study catchment, while the biological part of the ecosystem was Na-poor. The deposition of base metals was the strongest driver of their budgets suggesting that the base metal cycling of the study ecosystem is susceptible to changing deposition

    Transforming Pinus pinaster forest to recreation site: Preliminary effects on LAI, some forest floor, and soil properties

    No full text
    This study investigates the effects of forest transformation into recreation site. A fragment of a Pinus pinaster plantation forest was transferred to a recreation site in the city of BartIn located close to the Black Sea coast of northwestern Turkey. During the transformation, some of the trees were selectively removed from the forest to generate more open spaces for the recreationists. As a result, Leaf Area Index (LAI) decreased by 0.20 (about 11 %). Additionally, roads and pathways were introduced into the site together with some recreational equipment sealing parts of the soil surface. Consequently, forest environment was altered with a semi-natural landscape within the recreation site. The purpose of this study is to assess the effects of forest transformation into recreation site particularly in terms of the LAI parameter, forest floor, and soil properties. Preliminary monitoring results indicate that forest floor biomass is reduced by 26 % in the recreation site compared to the control site. Soil temperature is increased by 15 % in the recreation site where selective removal of trees expanded the gaps allowing more light transmission. On the other hand, the soil bulk density which is an indicator of soil compaction is unexpectedly slightly lower in the recreation site. Organic carbon (Corg) and total nitrogen (Ntotal) together with the other physical and chemical parameter values indicate that forest floor and soil have not been exposed to much disturbance. However, subsequent removal of trees that would threaten the vegetation, forest floor, and soil should not be allowed. The activities of the recreationists are to be concentrated on the paved spaces rather than soil surfaces. Furthermore, long-term monitoring and management is necessary for both the observation and conservation of the site. © 2013 Springer Science+Business Media
    corecore