559 research outputs found
Inertial levitation
We consider the steady levitation of a rigid plate on a thin air cushion with prescribed injection velocity. This injection velocity is assumed to be much larger than that in a conventional Prandtl boundary layer, so that inertial effects dominate. After applying the classical ‘blowhard’ theory of Cole & Aroesty (1968) to the two-dimensional version of the problem, it is shown that in three dimensions the flow may be foliated into streamline surfaces using Lagrangian variables. An example is given of how this may be exploited to solve the three-dimensional problem when the injection pressure distribution is known
Heat and fluid flow in a scraped-surface heat exchanger containing a fluid with temperature-dependent viscosity
Scraped-surface heat exchangers (SSHEs) are extensively used in a wide variety of industrial settings where the continuous processing of fluids and fluid-like materials is involved. The steady non-isothermal flow of a Newtonian fluid with temperature-dependent viscosity in a narrow-gap SSHE when a constant temperature difference is imposed across the gap between the rotor and the stator is investigated. The mathematical model is formulated and the exact analytical solutions for the heat and fluid flow of a fluid with a general dependence of viscosity on temperature for a general blade shape are obtained. These solutions are then presented for the specific case of an exponential dependence of viscosity on temperature. Asymptotic methods are employed to investigate the behaviour of the solutions in several special limiting geometries and in the limits of weak and strong thermoviscosity. In particular, in the limit of strong thermoviscosity (i.e., strong heating or cooling and/or strong dependence of viscosity on temperature) the transverse and axial velocities become uniform in the bulk of the flow with boundary layers forming either just below the blade and just below the stationary upper wall or just above the blade and just above the moving lower wall. Results are presented for the most realistic case of a linear blade which illustrate the effect of varying the thermoviscosity of the fluid and the geometry of the SSHE on the flow
Effects of environmental factors on development of Pyrenopeziza brassicae (light leaf spot) apothecia on oilseed rape debris
Publication no. P-2001-0221-01R. This article is in the public domain and not copyrightable. It may be freely reprinted with customary crediting of the source. The American Phytopathological Society, 2001The development of Pyrenopeziza brassicae (light leaf spot) apothecia was studied on petiole debris from artificially infected oilseed rape leaves incubated at temperatures from 6 to 22 degreesC under different wetness regimes and in 16 h light/8 h dark or continuous darkness. There was no significant difference between light treatments in numbers of apothecia that developed. Mature apothecia developed at temperatures from 5 to 18 degreesC but not at 22 degreesC. The rate of apothecial development decreased as temperature decreased from 18 to 5 degreesC; mature apothecia were first observed after 5 days at 18 degreesC and after 15 days at 6 degreesC. Models were fitted to estimates of the time (days) for 50% of the maximum number of apothecia to develop (t(1); model 1, t(1) = 7.6 + 55.8(0.839)(T)) and the time for 50% of the maximum number of apothecia to decay (t(2); model 2, t(2) = 24.2 + 387(0.730)(T)) at temperatures (T) from 6 to 18 degreesC. An interruption in wetness of the petiole debris for 4 days after 4, 7, or 10 days of wetness delayed the time to observation of the first mature apothecia for approximate to4 days and decreased the number of apothecia produced (by comparison with continuous wetness). A relationship was found between water content of pod debris and electrical resistance measured by a debris-wetness sensor. The differences between values of tl predicted by model 1 and observed values of t(1) were 1 to 9 days. Model 2 did not predict t(2); apothecia decayed more quickly under natural conditions than predicted by model 2.Peer reviewe
Journeying from “I” to “we”: assembling hybrid caring collectives of geography doctoral scholars
This is an Accepted Manuscript of an article published by Taylor & Francis in "Journal of Geography in Higher Education" on 15 June 2017, available at: https://www.tandfonline.com/doi/full/10.1080/03098265.2017.133529
Radio Continuum and Star Formation in CO-rich Early Type Galaxies
In this paper we present new high resolution VLA 1.4 GHz radio continuum
observations of five FIR bright CO-rich early-type galaxies and two dwarf
early-type galaxies. The position on the radio-FIR correlation combined with
striking agreements in morphology between high resolution CO and radio maps
show that the radio continuum is associated with star formation in at least
four of the eight galaxies. The average star formation rate for the sample
galaxies detected in radio is approximately 2 solar masses per year. There is
no evidence of a luminous AGN in any of our sample galaxies. We estimate Toomre
Q values and find that the gas disks may well be gravitationally unstable,
consistent with the above evidence for star formation activity. The radio
continuum emission thus corroborates other recent suggestions that star
formation in early type galaxies may not be uncommon.Comment: 21 pages, 7 figures, to be published in the Astronomical Journa
Effective control of Leptosphaeria maculans increases importance of L. biglobosa as a cause of phoma stem canker epidemics on oilseed rape
BACKGROUND: Phoma stem canker is a damaging disease of oilseed rape caused by two related fungal species, Leptosphaeria maculans and L. biglobosa. However, previous work has mainly focused on L. maculans and there has been little work on L. biglobosa. This work provides evidence of the importance of L. biglobosa to stem canker epidemics in the UK.
RESULTS: Quantification of L. maculans and L. biglobosa DNA using species-specific quantitative PCR showed that L. biglobosa caused both upper stem lesions and stem base cankers on nine oilseed rape cultivars in the UK. Upper stem lesions were mainly caused by L. biglobosa. For stem base cankers, there was more L. maculans DNA than L. biglobosa DNA in the susceptible cultivar Drakkar, while there was more L. biglobosa DNA than L. maculans DNA in cultivars with the resistance gene Rlm7 against L. maculans. The frequency of L. biglobosa detected in stem base cankers increased from 14% in 2000 to 95% in 2013. Ascospores of L. biglobosa and L. maculans were mostly released on the same days and the number of L. biglobosa ascospores in air samples increased from the 2010/2011 to 2012/2013 growing seasons.
CONCLUSION: Effective control of L. maculans increased infection by L. biglobosa, causing severe upper stem lesions and stem base cankers, leading to yield losses. The importance of L. biglobosa to phoma stem canker epidemics needs to target both L. maculans and L. biglobosa
Effector-triggered defence against apoplastic fungal pathogens
Copyright 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license CC BY 3.0 (http://creativecommons.org/licenses/by/3.0/). hR gene-mediated host resistance against apoplastic fungal pathogens is not adequately explained by the terms pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) or effector-triggered immunity (ETI). Therefore, it is proposed that this type of resistance is termed ‘effector-triggered defence’ (ETD). Unlike PTI and ETI, ETD is mediated by R genes encoding cell surface-localised receptor-like proteins (RLPs) that engage the receptor-like kinase SOBIR1. In contrast to this extracellular recognition, ETI is initiated by intracellular detection of pathogen effectors. ETI is usually associated with fast, hypersensitive host cell death, whereas ETD often triggers host cell death only after an elapsed period of endophytic pathogen growth. In this opinion, we focus on ETD responses against foliar fungal pathogens of cropsPeer reviewe
Phoma stem canker disease on oilseed rape (Brassica napus) in China is caused by Leptosphaeria biglobosa ‘brassicae’
This document is the Accepted Manuscript version of the following article: Ze Liu, Akinwunmi O. Latunde-Dada, Avice M. Hall, Bruce D. L. Fitt, ‘Phoma stem canker disease on oilseed rape (Brassica napus) in China is caused by Leptosphaeria biglobosa ‘brassicae’’, European Journal of Plant Pathology, Vol. 140(4): 841-857, December 2014. The final publication is available at Springer via: http://dx.doi.org/10.1007/s10658-014-0513-7 © Koninklijke Nederlandse Planteziektenkundige Vereniging 2014Phoma stem canker of oilseed rape (Brassica napus) is a globally important disease that is caused by the sibling ascomycete species Leptosphaeria maculans and L. biglobosa. Sixty fungal isolates obtained from oilseed rape stems with phoma stem canker disease symptoms collected from four provinces in China in 1999, 2005 and 2006 were all identified as Leptosphaeria biglobosa, not L. maculans, by PCR diagnostics based on species-specific primers. There were no differences in cultural characteristics (e.g. pigmentation and in vitro growth) between these L. biglobosa isolates from China and those of 37 proven L. biglobosa isolates from Europe or Canada. In studies using amplified fragment length polymorphism (AFLP) markers, Chinese L. biglobosa populations were genetically more similar to European L. biglobosa populations than to the more diverse Canadian L. biglobosa populations. Sequencing of gene fragments of β-tubulin, actin and the internal transcribed spacer (ITS) region of rDNA from L. biglobosa isolates from China, Europe, Australia and Canada showed a closer taxonomic similarity of Chinese L. biglobosa to the European L. biglobosa ‘brassicae’ than to Canadian L. biglobosa ‘canadensis’ or to the Australian L. biglobosa ‘occiaustralensis’ or ‘australensis’ subclades. These results suggest that the Chinese L. biglobosa population in this study is in the same subclade as European L. biglobosa ‘brassicae’ populationsPeer reviewe
- …