4,742 research outputs found

    Experimental Studies of the NaCs 53Π0 and a3Σ+ States

    Get PDF
    We report high resolution measurements of 372 NaCs 53Π0(v, J) ro-vibrational level energies in the range 0 ≤ v ≤ 22. The data have been used to construct NaCs 53Π0 potential energy curves using the Rydberg–Klein-Rees and inverted perturbation approximation methods. Bound-free 53Π0(v, J) → 1(a)3Σ+ emission has also been measured, and is used to determine the repulsive wall of the 1(a)3Σ+ state and the 53Π0 → 1(a)3Σ+ relative transition dipole moment function. Hyperfine structure in the 53Π0 state has not been observed in this experiment. This null result is explained using a simple vector coupling model

    Nacelle design

    Get PDF
    The external cowlings of engine nacelles on large turbofan powered aircraft are good candidates for application of natural laminar flow. These nacelles usually have shorter characteristic lengths than other candidate surfaces such as wings and fuselages and therefore have lower characteristic Reynolds numbers. A conceptive figure of the natural flow nacelle (NLF) is shown. On the typical nacelle the flow accelerates to a curvature induced velocity peak near the lip and then decelerates over the remainder of the nacelle length. Transition occurs near the start of the deceleration, so turbulent flow with high friction coefficient exists over most of the nacelle length. On the other hand, the NLF nacelle is contoured to have an accelerating flow over most of its length, so transition is delayed, and a relatively lower friction drag exists over most of the nacelle. The motivation for development of the LFN is a potential 40 to 50 percent reduction in nacelle friction drag

    Proton affinities of candidates for positively charged ambient ions in boreal forests

    Get PDF
    The optimized structures and proton affinities of a total of 81 nitrogen-containing bases, chosen based on field measurements of ambient positive ions, were studied using the CBS-QB3 quantum chemical method. The results were compared to values given in the National Institute of Standards and Technology (NIST) Chemistry WebBook in cases where a value was listed. The computed values show good agreement with the values listed in NIST. Grouping the molecules based on their molecular formula, the largest calculated proton affinities for each group were also compared with experimentally observed ambient cation concentrations in a boreal forest. This comparison allows us to draw qualitative conclusions about the relative ambient concentrations of different nitrogen-containing organic base molecules

    Daily Stress Recognition from Mobile Phone Data, Weather Conditions and Individual Traits

    Full text link
    Research has proven that stress reduces quality of life and causes many diseases. For this reason, several researchers devised stress detection systems based on physiological parameters. However, these systems require that obtrusive sensors are continuously carried by the user. In our paper, we propose an alternative approach providing evidence that daily stress can be reliably recognized based on behavioral metrics, derived from the user's mobile phone activity and from additional indicators, such as the weather conditions (data pertaining to transitory properties of the environment) and the personality traits (data concerning permanent dispositions of individuals). Our multifactorial statistical model, which is person-independent, obtains the accuracy score of 72.28% for a 2-class daily stress recognition problem. The model is efficient to implement for most of multimedia applications due to highly reduced low-dimensional feature space (32d). Moreover, we identify and discuss the indicators which have strong predictive power.Comment: ACM Multimedia 2014, November 3-7, 2014, Orlando, Florida, US

    Computer aided diagnosis for cardiovascular diseases based on ECG signals : a survey

    Get PDF
    The interpretation of Electroencephalography (ECG) signals is difficult, because even subtle changes in the waveform can indicate a serious heart disease. Furthermore, these waveform changes might not be present all the time. As a consequence, it takes years of training for a medical practitioner to become an expert in ECG-based cardiovascular disease diagnosis. That training is a major investment in a specific skill. Even with expert ability, the signal interpretation takes time. In addition, human interpretation of ECG signals causes interoperator and intraoperator variability. ECG-based Computer-Aided Diagnosis (CAD) holds the promise of improving the diagnosis accuracy and reducing the cost. The same ECG signal will result in the same diagnosis support regardless of time and place. This paper introduces both the techniques used to realize the CAD functionality and the methods used to assess the established functionality. This survey aims to instill trust in CAD of cardiovascular diseases using ECG signals by introducing both a conceptional overview of the system and the necessary assessment method

    Simulating Auxiliary Inputs, Revisited

    Get PDF
    For any pair (X,Z)(X,Z) of correlated random variables we can think of ZZ as a randomized function of XX. Provided that ZZ is short, one can make this function computationally efficient by allowing it to be only approximately correct. In folklore this problem is known as \emph{simulating auxiliary inputs}. This idea of simulating auxiliary information turns out to be a powerful tool in computer science, finding applications in complexity theory, cryptography, pseudorandomness and zero-knowledge. In this paper we revisit this problem, achieving the following results: \begin{enumerate}[(a)] We discuss and compare efficiency of known results, finding the flaw in the best known bound claimed in the TCC'14 paper "How to Fake Auxiliary Inputs". We present a novel boosting algorithm for constructing the simulator. Our technique essentially fixes the flaw. This boosting proof is of independent interest, as it shows how to handle "negative mass" issues when constructing probability measures in descent algorithms. Our bounds are much better than bounds known so far. To make the simulator (s,ϵ)(s,\epsilon)-indistinguishable we need the complexity O(s25ϵ2)O\left(s\cdot 2^{5\ell}\epsilon^{-2}\right) in time/circuit size, which is better by a factor ϵ2\epsilon^{-2} compared to previous bounds. In particular, with our technique we (finally) get meaningful provable security for the EUROCRYPT'09 leakage-resilient stream cipher instantiated with a standard 256-bit block cipher, like AES256\mathsf{AES256}.Comment: Some typos present in the previous version have been correcte

    The chaining lemma and its application

    Get PDF
    We present a new information-theoretic result which we call the Chaining Lemma. It considers a so-called “chain” of random variables, defined by a source distribution X(0)with high min-entropy and a number (say, t in total) of arbitrary functions (T1,…, Tt) which are applied in succession to that source to generate the chain (Formula presented). Intuitively, the Chaining Lemma guarantees that, if the chain is not too long, then either (i) the entire chain is “highly random”, in that every variable has high min-entropy; or (ii) it is possible to find a point j (1 ≤ j ≤ t) in the chain such that, conditioned on the end of the chain i.e. (Formula presented), the preceding part (Formula presented) remains highly random. We think this is an interesting information-theoretic result which is intuitive but nevertheless requires rigorous case-analysis to prove. We believe that the above lemma will find applications in cryptography. We give an example of this, namely we show an application of the lemma to protect essentially any cryptographic scheme against memory tampering attacks. We allow several tampering requests, the tampering functions can be arbitrary, however, they must be chosen from a bounded size set of functions that is fixed a prior

    Turbofan mixed flow exhaust system

    Get PDF
    An improved exhaust system including a lobed mixer and an improved exhaust centerbody is provided. The improved exhaust centerbody includes means for cooperating with the lobed mixer to increase mixing effectiveness of the exhaust system without substantially increasing pressure losses attributable thereto. In a preferred embodiment of the invention, the cooperating means include a plurality of circumferentially spaced elongated deformations, such as grooves and ridges, which deformations extend radially with respect to a reference surface of the exhaust centerbody and which deformations are aligned in an axial direction substantially parallel to a longitudinal axis of the centerbody
    corecore