1,537 research outputs found

    A review of microfabricated electrochemical biosensors for DNA detection

    Get PDF
    This review article presents an overview of recent work on electrochemical biosensors developed using microfabrication processes, particularly sensors used to achieve sensitive and specific detection of DNA sequences. Such devices are important as they lend themselves to miniaturisation, reproducible mass-manufacture, and integration with other previously existing technologies and production methods. The review describes the current state of these biosensors, novel methods used to produce them or enhance their sensing properties, and pathways to deployment of a complete point-of-care biosensing system in a clinical setting

    Synthesis and Spectroscopy of Buckminsterfullerene Cation C<sub>60</sub><sup>+</sup> in a Cryogenic Ion Trapping Instrument

    Get PDF
    The assignment of several diffuse interstellar bands in the near-infrared to C60+ ions present at high abundance in space has renewed interest in the astrochemical importance of fullerenes and analogues. Many of the latter have not been produced in macroscopic quantities, and their spectroscopic properties are not available for comparison with astronomical observations. An apparatus has been constructed that combines laser vaporisation synthesis with spectroscopic characterisation at low temperature in a cryogenic trap. This instrument is used here to record the electronic absorptions of C60+ produced by laser vaporisation of graphite. These are detected by (helium tagged) messenger spectroscopy in a cryogenic trap. By comparison with spectra obtained using a sublimed sample of Buckminsterfullerene, the observed data show that this isomer is the dominant C60+ structure tagged with helium at m/z=724, indicating that the adopted approach can be used to access the spectra of other fullerenes and derivatives of astrochemical interest

    Electronic Spectroscopy of Monocyclic Carbon Ring Cations for Astrochemical Consideration

    Get PDF
    [Image: see text] Gas phase electronic spectra of pure carbon cations generated by laser vaporization of graphite in a supersonic jet and cooled to below 10 K and tagged with helium atoms in a cryogenic trap are presented. The measured C(2n)(+)–He with n from 6 to 14, are believed to be monocyclic ring structures and possess an origin band wavelength that shifts linearly with the number of carbon atoms, as recently demonstrated through N(2) tagging by Buntine et al. (J. Chem. Phys.2021, 155, 21430234879679). The set of data presented here further constrains the spectral characteristics inferred for the bare C(2n)(+) ions to facilitate astronomical searches for them in diffuse clouds by absorption spectroscopy

    Electronic spectroscopy of 1-cyanonaphthalene cation for astrochemical consideration

    Get PDF
    Context. Polycyclic aromatic hydrocarbons (PAHs) are believed to be the carriers of the aromatic infrared bands and have been proposed as candidates to explain other astronomical phenomena such as diffuse interstellar bands (DIBs). The first aromatic structures possessing more than one ring, 1- and 2-cyanonaphthalene (CNN), were recently detected by rotational spectroscopy in the dense molecular cloud TMC-1. Laboratory investigations have indicated that due to fast and efficient relaxation through recurrent fluorescence (RF), CNN+ may be photostable in the harsh conditions of the lower density, more diffuse regions of the interstellar medium (ISM) exposed to ultraviolet (UV) radiation. As a result, it has been suggested that the widely held belief that small PAHs present in these regions are dissociated may need to be revisited. If 1-CNN+ is able to survive in the diffuse ISM it may contribute to the population of 1-CNN observed in TMC-1. To investigate the abundance of 1-CNN+ in diffuse clouds, laboratory spectroscopy is required. The present work concerns the electronic spectroscopy of 1-CNN+ in absorption and the search for its spectroscopic fingerprints in diffuse clouds. Aims. The aim is to obtain laboratory data on the electronic transitions of gas-phase 1-CNN+ under conditions appropriate for comparison with DIBs and assess abundance in diffuse clouds. Methods. Spectroscopic experiments are carried out using a cryogenic ion trapping apparatus in which gas-phase 1-CNN+ is cooled to temperatures below 10 K through buffer gas cooling. Calculations are carried out using time-dependent density-functional theory. Results. Experimental and theoretical data on the D2 ← D0 and D3 ← D0 electronic transitions of 1-CNN+ are reported. The former transition has a calculated oscillator strength of f = 0.075 and possesses a pattern dominated by its origin band. The origin band is located at 7343 Å and has a full width at half maximum of 28 Å. In observational data, this falls in a region polluted by telluric water lines, hindering assessment of its abundance. Conclusions. Space-based observations are required to search for the spectroscopic signatures of 1-CNN+ and evaluate the hypothesis that this small aromatic system, stabilised by RF, may be able to survive in regions of the ISM exposed to UV photons

    A Comparison of Disease Risk Analysis Tools for Conservation Translocations

    Get PDF
    Conservation translocations are increasingly used to manage threatened species and restore ecosystems. Translocations increase the risk of disease outbreaks in the translocated and recipient populations. Qualitative disease risk analyses have been used as a means of assessing the magnitude of any effect of disease and the probability of the disease occurring associated with a translocation. Currently multiple alternative qualitative disease risk analysis packages are available to practitioners. Here we compare the ease of use, expertise required, transparency, and results from, three different qualitative disease risk analyses using a translocation of the endangered New Zealand passerine, the hihi (Notiomystis cincta), as a model. We show that the three methods use fundamentally different approaches to define hazards. Different methods are used to produce estimations of the risk from disease, and the estimations are different for the same hazards. Transparency of the process varies between methods from no referencing, or explanations of evidence to justify decisions, through to full documentation of resources, decisions and assumptions made. Evidence to support decisions on estimation of risk from disease is important, to enable knowledge acquired in the future, for example from translocation outcome, to be used to improve the risk estimation for future translocations. Information documenting each disease risk analysis differs along with variation in emphasis of the questions asked within each package. The expertise required to commence a disease risk analysis varies and an action flow chart tailored for the non-wildlife health specialist are included in one method but completion of the disease risk analysis requires wildlife health specialists with epidemiological and pathological knowledge in all three methods. We show that disease risk analysis package choice may play a greater role in the overall risk estimation of the effect of disease on animal populations involved in a translocation than might previously have been realised

    What is the Entanglement Length in a Polymer Melt ?

    Full text link
    We present results of molecular dynamics simulations of very long model polymer chains analyzed by various experimentally relevant techniques. The segment motion of the chains is found to be in very good agreement with the repatation model. We also calculated the plateau-modulus G_N. The predicitions of the entanglement length N_e from G_N and from the mean square displacements of the chains segments disagree by a factor of about 2.2(2), indicating an error in the prefactor in the standard formula for G_N. We show that recent neutron spin echo measurements were carried out for chain lengths which are too small for a correct determination of N_e.Comment: 5 pages, 4 figures, RevTe

    Electronic Spectroscopy of He@C60+ for Astrochemical Consideration

    Get PDF
    The electronic spectrum of the endohedral fullerene He@C+60 observed by messenger spectroscopy in a cryogenic ion trap is presented. The role played by the messanger tag in the adopted experimental method is evaluated by recording spectra of He@C+60 − Hen with n = 1−4. The results indicate a linear shift of ∼ 0.7 Å in the wavelengths allowing accurate gas phase values to be reported. The presence of the helium inside the cage shifts the absorption bands by 2−3 Å toward shorter wavelengths compared to C+60. The magnitude of this displacement will enable searches for the spectral signatures of this fullerene analogue in interstellar environments by absorption spectroscopy. The implications for potential astronomical detection are discussed

    Моделирование регистрации высокоэнергетических гамма-квантов в СПО GEANT4

    Get PDF
    Целью работы является определение эффективности регистрации y-квантов с энергиями до 20 МэВ, получаемых на установке ИДМ-40, при различных вариантах расположения сцинтилляционных NaI(Tl) детекторов. В результате исследования создан программный код, позволяющий с помощью метода Монте-Карло моделировать аппаратурные спектры y-квантов с учетом характеристик реальных детекторов, а также получены кривые эффективности регистрации y-квантов детекторами при различных вариантах их расположения.The objective of the present work is to determine the efficiency of gamma quanta registration with quanta energy below 20 MeV. The registration of gamma quanta is performed using scintillation NaI(Tl) detectors. As a result of this study, the Monte-Carlo code which allows to simulate instrumental spectra of gamma quanta using the properties of real detectors was created. Gamma quanta registration efficiency curves were obtained by Monte-Carlo simulation for different options of detectors emplacement
    corecore