61 research outputs found

    Wind-induced Torsional Loads on Low Buildings

    Get PDF
    Wind-induced instantaneous pressures on low building envelopes continuously vary in temporal and spatial dimensions and this may lead to significant torsional moments on the building's lateral load resisting system. Studies on wind-induced torsional loads on low buildings are very limited. Wind-induced torsion provisions in the American Society of Civil Engineers Standard (ASCE/SEI 7-10, 2010), the National Building Code of Canada (NBCC, 2010), and the European Code (EN 1991-1-4, 2005) were reviewed and compared for three gabled-roof (18.4°) low buildings. Significant discrepancies were found among the provisions of these wind standards in evaluating torsional wind loads on low buildings. In addition, wind-induced torsional loads on low buildings have been measured in a boundary layer wind tunnel. Three low buildings, with the same plan dimensions but different gabled-roof angles (0°, 18.4°, 45°) and two different heights (i.e. full, and half eave building height) were tested in simulated open and urban terrain exposures for different wind directions (from 0° to 180° every 15°). The experimental results were compared with current wind-induced torsional load provisions. It was found that NBCC (2010) underestimates the torsional moments on low buildings significantly

    Design Wind Loads Including Torsion for Rectangular Buildings with Horizontal Aspect Ratio of 1.6

    Get PDF
    Limited information is available regarding wind-induced torsional loads on buildings. This paper presents results of tests carried out in a boundary-layer wind tunnel using building models with the same plan dimensions (aspect ratio of 1.6) and located in a simulated open terrain exposure for different wind directions. Synchronized wind pressure measurements allowed estimating instantaneous base-shear forces and torsional moments on the tested rigid building models. Results were normalized and presented in terms of shear and torsional coefficients for two load cases, namely: maximum torsion and corresponding shear, and maximum shear and corresponding torsion. Comparison of the wind-tunnel test results with current torsion- and shear-related provisions in the American standard demonstrates good agreement for low-rise buildings but differences for medium-rise buildings

    Comparison of Wind Tunnel Measurements with NBCC 2010 Wind-Induced Torsion Provisions for Low- and Medium-Rise Buildings

    Get PDF
    The aim of this study is to assess wind-induced torsional loads on low- and medium-rise buildings determined in accordance with the National Building Code of Canada (NBCC 2010). Two building models with the same horizontal dimensions but different gabled-roof angles (0° and 45°) were tested at different full-scale equivalent eave heights (6, 12, 20, 30, 40, 50, and 60 m) in open terrain exposure for several wind directions (every 15°). Wind-induced measured pressures were numerically integrated over all building surfaces and results were obtained for along-wind force, across-wind force, and torsional moment. Torsion load case (i.e., maximum torsion and corresponding shear) and shear load case (i.e., maximum shear and corresponding torsion) were evaluated to reflect the maximum actual wind load effects in the two horizontal directions (i.e., transverse and longitudinal). The evaluated torsion and shear load cases were also compared with the current torsion- and shear-related provisions in the NBCC 2010. The results demonstrated significant discrepancies between NBCC 2010 and the wind tunnel measurements regarding the evaluation of torsional wind loads on low- and medium-rise buildings. Finally, shear and torsion load cases were suggested for evaluating wind loads in the design of low- and medium-rise rectangular buildings

    Torsional and Shear Wind Loads on Flat-Roofed Buildings

    Get PDF
    There is limited information available on wind-induced torsional loads on buildings. This paper presents results of wind tunnel tests carried out on a series of models of low- and medium-rise buildings. Four buildings with the same plan dimensions but different heights (6, 12, 25 and 50 m) were tested in a simulated open terrain exposure for different wind directions. Synchronized wind pressure measurements allowed estimating instantaneous base shear forces and torsional moments on the tested rigid building models. Results were normalized and presented in terms of mean and peak values of shear and torsional coefficients for two load cases, namely: maximum torsion and corresponding shear, and maximum shear and corresponding torsion. Comparison of the wind tunnel test results with current torsion- and shear-related provisions in the American Standard as well as the Canadian and European codes demonstrates significant discrepancies. The findings of this study could assist wind code and standards committees to improve provisions for wind-induced torsional loads on buildings

    Mutational Characterization of the Bile Acid Receptor TGR5 in Primary Sclerosing Cholangitis

    Get PDF
    TGR5, the G protein-coupled bile acid receptor 1 (GPBAR1), has been linked to inflammatory pathways as well as bile homeostasis, and could therefore be involved in primary sclerosing cholangitis (PSC) a chronic inflammatory bile duct disease. We aimed to extensively investigate TGR5 sequence variation in PSC, as well as functionally characterize detected variants. Complete resequencing of TGR5 was performed in 267 PSC patients and 274 healthy controls. Six nonsynonymous mutations were identified in addition to 16 other novel single-nucleotide polymorphisms. To investigate the impact from the nonsynonymous variants on TGR5, we created a receptor model, and introduced mutated TGR5 constructs into human epithelial cell lines. By using confocal microscopy, flow cytometry and a cAMP-sensitive luciferase assay, five of the nonsynonymous mutations (W83R, V178M, A217P, S272G and Q296X) were found to reduce or abolish TGR5 function. Fine-mapping of the previously reported PSC and UC associated locus at chromosome 2q35 in large patient panels revealed an overall association between the TGR5 single-nucleotide polymorphism rs11554825 and PSC (odds ratio = 1.14, 95% confidence interval: 1.03-1.26, p = 0.010) and UC (odds ratio = 1.19, 95% confidence interval 1.11-1.27, p = 8.5 x 10(-7)), but strong linkage disequilibrium precluded demarcation of TGR5 from neighboring genes. Resequencing of TGR5 along with functional investigations of novel variants provided unique insight into an important candidate gene for several inflammatory and metabolic conditions. While significant TGR5 associations were detected in both UC and PSC, further studies are needed to conclusively define the role of TGR5 variation in these diseases

    Analytical methods for inferring functional effects of single base pair substitutions in human cancers

    Get PDF
    Cancer is a genetic disease that results from a variety of genomic alterations. Identification of some of these causal genetic events has enabled the development of targeted therapeutics and spurred efforts to discover the key genes that drive cancer formation. Rapidly improving sequencing and genotyping technology continues to generate increasingly large datasets that require analytical methods to identify functional alterations that deserve additional investigation. This review examines statistical and computational approaches for the identification of functional changes among sets of single-nucleotide substitutions. Frequency-based methods identify the most highly mutated genes in large-scale cancer sequencing efforts while bioinformatics approaches are effective for independent evaluation of both non-synonymous mutations and polymorphisms. We also review current knowledge and tools that can be utilized for analysis of alterations in non-protein-coding genomic sequence
    • …
    corecore