102,028 research outputs found

    Surface current excitation on an inhomogeneously-sheathed plasma immersed cylinder by electromagnetic and electrokinetic waves

    Get PDF
    Inhomogeneous sheath effect on surface current excitation of immersed plasma cylinder by electromagnetic and electrokinetic wave

    Entropy for SU(3)cSU(3)_c Quark States

    Full text link
    We discuss the quantum state structure using the standard model for three colored quarks in the fundamental representations of SU(3)cSU(3)_c making up the singlet ground state of the hadrons. This allows us to calculate a finite von Neumann entropy from the quantum reduced density matrix, which we explicitly evaluate for the quarks in a model for the meson and baryon states. Finally we look into the general effects and implications of entanglement in the SU(3)cSU(3)_c color space.Comment: 9 pages, 0 figure

    Conditions driving chemical freeze-out

    Full text link
    We propose the entropy density as the thermodynamic condition driving best the chemical freeze-out in heavy-ion collisions. Taking its value from lattice calculations at zero chemical potential, we find that it is excellent in reproducing the experimentally estimated freeze-out parameters. The two characteristic endpoints in the freeze-out diagram are reproduced as well.Comment: 8 pages, 5 eps figure

    Cross-calibration of Suzaku XIS and XMM-Newton EPIC using clusters of galaxies

    Full text link
    We extend a previous cross-calibration study by the International Astronomical Consortium for High Energy Calibration (IACHEC) on XMM-Newton/EPIC, Chandra/ACIS and BeppoSAX/MECS X-ray instruments with clusters of galaxies to Suzaku/XIS instruments. Our aim is to study the accuracy of the energy-dependent effective area calibration of the XIS instruments by comparison of spectroscopic temperatures, fluxes and fit residuals obtained with Suzaku/XIS and XMM-Newton/EPIC-pn for the same cluster. The temperatures measured in the hard 2.0-7.0 keV energy band with all instruments are consistent within 5 %. However, temperatures obtained with the XIS instruments in the soft 0.5-2.0 keV band disagree by 9-29 %. We investigated residuals in the XIS soft band, which showed that if XIS0 effective area shape is accurately calibrated, the effective areas of XIS1 and XIS3 are overestimated below 1.0 keV (or vice versa). Adjustments to the modelling of the column density of the XIS contaminant in the 3-6 arcmin extraction region while forcing consistent emission models in each instrument for a given cluster significantly improved the fits. The oxygen column density in XIS1 and XIS3 contaminant must be increased by 1-2E17 cm^-2 in comparison to the values implemented in the current calibration, while the column density of the XIS0 contaminant given by the analysis is consistent with the public calibration. XIS soft band temperatures obtained with the modification to the column density of the contaminant agree better with temperatures obtained with the EPIC-pn instrument of XMM-Newton, than with those derived using the Chandra-ACIS instrument. However, comparison of hard band fluxes obtained using Suzaku-XIS to fluxes obtained using the Chandra-ACIS and EPIC-pn instruments proved inconclusive.Comment: 24 pages, 27 figures, accepted for publication in Astronomy & Astrophysic

    Space station particulate contamination environment

    Get PDF
    The origin of particulate contamination on the Space Station will mostly be from pre-launch operations. The adherence and subsequent release of these particles during space flight are discussed. Particle size, release velocity, and release direction are important in determining particle behavior in the vicinity of the vehicle. The particulate environment at the principal science instrument locations is compared to the space shuttle bay environment. Recommendations for possibly decreasing the particulate contamination are presented

    The influence of strange quarks on QCD phase diagram and chemical freeze-out: Results from the hadron resonance gas model

    Full text link
    We confront the lattice results on QCD phase diagram for two and three flavors with the hadron resonance gas model. Taking into account the truncations in the Taylor-expansion of energy density ϵ\epsilon done on the lattice at finite chemical potential μ\mu, we find that the hadron resonance gas model under the condition of constant ϵ\epsilon describes very well the lattice phase diagram. We also calculate the chemical freeze-out curve according to the entropy density ss. The ss-values are taken from lattice QCD simulations with two and three flavors. We find that this condition is excellent in reproducing the experimentally estimated parameters of the chemical freeze-out.Comment: 5 pages, 3 figures and 1 table Talk given at VIIIth international conference on ''Strangeness in Quark Matter'' (SQM 2004), Cape Town, South Africa, Sep. 15-20 200

    Effect of the NACA Injection Impeller on the Mixture Distribution of a Double-Row Radial Aircraft Engine

    Get PDF
    The NACA injection impeller was developed to improve the mixture distribution of aircraft engines by discharging the fuel from a centrifugal supercharger impeller, thus promoting a thorough mixing of fuel and charge air. Tests with a double-row radial aircraft engine indicated that for the normal range of engine power the NACA injection impeller provided marked improvement in mixture distribution over the standard spray-bar injection system used in the same engine. The mixture distribution at cruising conditions was excellent; at 1200, 15OO, and 1700 brake horsepower, the differences between the fuel-air ratios of the richest and the leanest cylinders were reduced to approximately one-third their former values. The maximum cylinder temperatures were reduced about 30 [degrees] F and the temperature distribution was improved by approximately the degree expected from the improvement in mixture distribution. Because the mixture distribution of the engine tested improves slightly at engine powers exceeding 1500 brake horsepower and because the effectiveness of the particular impeller diminished slightly at high rates of fuel flow, the improvement in mixture distribution at rated power and rich mixtures was less than that for other conditions. The difference between the fuel-air ratios of the richest and the leanest cylinders of the engine using the standard spray bar was so great that the fuel-air ratios of several cylinders were well below the chemically correct mixture, whereas other cylinders were operating at rich mixtures. Consequently, enrichment to improve engine cooling actually increascd some of the critical temperatures. The uniform mixture distribution providod by the injection impeller restored the normal response of cylinder temperatures to mixture enrichnent

    Synchronized voltage contrast display analysis system

    Get PDF
    An apparatus and method for comparing internal voltage potentials of first and second operating electronic components such as large scale integrated circuits (LSI's) in which voltage differentials are visually identified via an appropriate display means are described. More particularly, in a first embodiment of the invention a first and second scanning electron microscope (SEM) are configured to scan a first and second operating electronic component respectively. The scan pattern of the second SEM is synchronized to that of the first SEM so that both simultaneously scan corresponding portions of the two operating electronic components. Video signals from each SEM corresponding to secondary electron signals generated as a result of a primary electron beam intersecting each operating electronic component in accordance with a predetermined scan pattern are provided to a video mixer and color encoder

    Statistical derivation of design criteria for liquid rocket combustion instability Final report

    Get PDF
    Statistical correlation between engine design and combustion stability in liquid propellant rocket engine
    corecore