938 research outputs found

    CANGAROO-III Observation of TeV Gamma Rays from the vicinity of PSR B1 706-44

    Get PDF
    Observation by the CANGAROO-III stereoscopic system of the Imaging Cherenkov Telescope has detected extended emission of TeV gamma rays in the vicinity of the pulsar PSR B1706-44. The strength of the signal observed as gamma-ray-like events varies when we apply different ways of emulating background events. The reason for such uncertainties is argued in relevance to gamma-rays embedded in the "off-source data", that is, unknown sources and diffuse emission in the Galactic plane, namely, the existence of a complex structure of TeV gamma-ray emission around PSR B1706-44.Comment: 10 pages, 13 figures, to be published in Ap

    CANGAROO-III Search for Gamma Rays from SN 1987A and the Surrounding Field

    Full text link
    Optical images of SN 1987A show a triple ring structure. The inner (dust) ring has recently increased in brightness and in the number of hot spots suggesting that the supernova shock wave has collided with the dense pre-existing circumstellar medium, a scenario supported by radio and X-ray observations. Such a shocked environment is widely expected to result in the acceleration of charged particles, and the accompanying emission of very high energy gamma-rays. Here, we report the results of observations made in 2004 and 2006 which yield upper limits on the TeV gamma-ray flux, which are compared with a theoretical prediction. In addition, we set upper limits on the TeV flux for four high energy objects which are located within the same field of view of the observation: the super-bubble 30 Dor C, the Crab-like pulsar PSR B0540-69, the X-ray binary LMC X-1, and the supernova remnant N157B.Comment: 5 pages, 5 figures, Accepted for publication in Ap

    Observation of an extended VHE gamma-ray emission from MSH 15-52 with CANGAROO-III

    Full text link
    We have observed the supernova remnant MSH 15-52 (G320.4-1.2), which contains the gamma-ray pulsar PSR B1509-58, using the CANGAROO-III imaging atmospheric Cherenkov telescope array from April to June in 2006. We detected gamma rays above 810 GeV at the 7 sigma level during a total effective exposure of 48.4 hours. We obtained a differential gamma-ray flux at 2.35 TeV of (7.9+/-1.5_{stat}+/-1.7_{sys}) \times 10^{-13} cm^{-2}s^{-1}TeV^{-1} with a photon index of 2.21+/-0.39_{stat}+/-0.40_{sys}, which is compatible with that of the H.E.S.S. observation in 2004. The morphology shows extended emission compared to our Point Spread Function. We consider the plausible origin of the high energy emission based on a multi-wavelength spectral analysis and energetics arguments.Comment: 9 pages, 9 figures, Accepted in Ap

    Observation of Very High Energy Gamma Rays from HESS J1804-216 with CANGAROO-III Telescopes

    Full text link
    We observed the unidentified TeV gamma-ray source HESS J1804-216 with the CANGAROO-III atmospheric Cerenkov telescopes from May to July in 2006. We detected very high energy gamma rays above 600 GeV at the 10 sigma level in an effective exposure of 76 hr. We obtained a differential flux of (5.0+/-1.5_{stat}+/-1.6_{sys})\times 10^{-12}(E/1 TeV)^{-\alpha} cm^{-2}s^{-1}TeV^{-1} with a photon index \alpha of 2.69 +/- 0.30_{stat} +/- 0.34_{sys}, which is consistent with that of the H.E.S.S. observation in 2004. We also confirm the extended morphology of the source. By combining our result with multi-wavelength observations, we discuss the possible counterparts of HESS J1804-216 and the radiation mechanism based on leptonic and hadronic processes for a supernova remnant and a pulsar wind nebula.Comment: 11 pages, 12 figures, Accepted in Ap

    Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies

    Get PDF
    We present the first joint analysis of gamma-ray data from the MAGIC Cherenkov telescopes and the Fermi Large Area Telescope (LAT) to search for gamma-ray signals from dark matter annihilation in dwarf satellite galaxies. We combine 158 hours of Segue 1 observations with MAGIC with 6-year observations of 15 dwarf satellite galaxies by the Fermi-LAT. We obtain limits on the annihilation cross-section for dark matter particle masses between 10 GeV and 100 TeV - the widest mass range ever explored by a single gamma-ray analysis. These limits improve on previously published Fermi-LAT and MAGIC results by up to a factor of two at certain masses. Our new inclusive analysis approach is completely generic and can be used to perform a global, sensitivity-optimized dark matter search by combining data from present and future gamma-ray and neutrino detectors.Comment: 19 pages, 3 figures. V2: Few typos corrected and references added. Matches published version JCAP 02 (2016) 03

    The Cherenkov Telescope Array Large Size Telescope

    Full text link
    The two arrays of the Very High Energy gamma-ray observatory Cherenkov Telescope Array (CTA) will include four Large Size Telescopes (LSTs) each with a 23 m diameter dish and 28 m focal distance. These telescopes will enable CTA to achieve a low-energy threshold of 20 GeV, which is critical for important studies in astrophysics, astroparticle physics and cosmology. This work presents the key specifications and performance of the current LST design in the light of the CTA scientific objectives.Comment: 4 pages, 5 figures, In Proceedings of the 33rd International Cosmic Ray Conference (ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at arXiv:1307.223

    Detection of bridge emission above 50 GeV from the Crab pulsar with the MAGIC telescopes

    Full text link
    The Crab pulsar is the only astronomical pulsed source detected at very high energy (VHE, E>100GeV) gamma-rays. The emission mechanism of VHE pulsation is not yet fully understood, although several theoretical models have been proposed. In order to test the new models, we measured the light curve and the spectra of the Crab pulsar with high precision by means of deep observations. We analyzed 135 hours of selected MAGIC data taken between 2009 and 2013 in stereoscopic mode. In order to discuss the spectral shape in connection with lower energies, 4.6 years of {\it Fermi}-LAT data were also analyzed. The known two pulses per period were detected with a significance of 8.0σ8.0 \sigma and 12.6σ12.6 \sigma. In addition, significant emission was found between the two pulses with 6.2σ6.2 \sigma. We discovered the bridge emission above 50 GeV between the two main pulses. This emission can not be explained with the existing theories. These data can be used for testing new theoretical models.Comment: 5 pages, 4 figure

    Measurement of the Crab Nebula spectrum over three decades in energy with the MAGIC telescopes

    Get PDF
    The MAGIC stereoscopic system collected 69 hours of Crab Nebula data between October 2009 and April 2011. Analysis of this data sample using the latest improvements in the MAGIC stereoscopic software provided an unprecedented precision of spectral and night-by-night light curve determination at gamma rays. We derived a differential spectrum with a single instrument from 50 GeV up to almost 30 TeV with 5 bins per energy decade. At low energies, MAGIC results, combined with Fermi-LAT data, show a flat and broad Inverse Compton peak. The overall fit to the data between 1 GeV and 30 TeV is not well described by a log-parabola function. We find that a modified log-parabola function with an exponent of 2.5 instead of 2 provides a good description of the data (χ2=35/26\chi^2=35/26). Using systematic uncertainties of red the MAGIC and Fermi-LAT measurements we determine the position of the Inverse Compton peak to be at (53 ±\pm 3stat + 31syst -13syst) GeV, which is the most precise estimation up to date and is dominated by the systematic effects. There is no hint of the integral flux variability on daily scales at energies above 300 GeV when systematic uncertainties are included in the flux measurement. We consider three state- of-the-art theoretical models to describe the overall spectral energy distribution of the Crab Nebula. The constant B-field model cannot satisfactorily reproduce the VHE spectral measurements presented in this work, having particular difficulty reproducing the broadness of the observed IC peak. Most probably this implies that the assumption of the homogeneity of the magnetic field inside the nebula is incorrect. On the other hand, the time-dependent 1D spectral model provides a good fit of the new VHE results when considering a 80 {\mu}G magnetic field. However, it fails to match the data when including the morphology of the nebula at lower wavelengths.Comment: accepted by JHEAp, 9 pages, 6 figure

    Detection of very high energy gamma-ray emission from the gravitationally-lensed blazar QSO B0218+357 with the MAGIC telescopes

    Get PDF
    Context. QSO B0218+357 is a gravitationally lensed blazar located at a redshift of 0.944. The gravitational lensing splits the emitted radiation into two components, spatially indistinguishable by gamma-ray instruments, but separated by a 10-12 day delay. In July 2014, QSO B0218+357 experienced a violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes. Aims. The spectral energy distribution of QSO B0218+357 can give information on the energetics of z ~ 1 very high energy gamma- ray sources. Moreover the gamma-ray emission can also be used as a probe of the extragalactic background light at z ~ 1. Methods. MAGIC performed observations of QSO B0218+357 during the expected arrival time of the delayed component of the emission. The MAGIC and Fermi-LAT observations were accompanied by quasi-simultaneous optical data from the KVA telescope and X-ray observations by Swift-XRT. We construct a multiwavelength spectral energy distribution of QSO B0218+357 and use it to model the source. The GeV and sub-TeV data, obtained by Fermi-LAT and MAGIC, are used to set constraints on the extragalactic background light. Results. Very high energy gamma-ray emission was detected from the direction of QSO B0218+357 by the MAGIC telescopes during the expected time of arrival of the trailing component of the flare, making it the farthest very high energy gamma-ray sources detected to date. The observed emission spans the energy range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy distribution of QSO B0218+357 is consistent with current extragalactic background light models. The broad band emission can be modeled in the framework of a two zone external Compton scenario, where the GeV emission comes from an emission region in the jet, located outside the broad line region.Comment: 11 pages, 6 figures, accepted for publication in A&
    corecore