5,037 research outputs found

    Gas Component Transport Across the Soil-Atmosphere Interface for Gases of Different Density: Experiments and Modeling

    Get PDF
    We investigate the influence of near-surface wind conditions on subsurface gas transport and on soil-atmosphere gas exchange for gases of different density. Results of a sand tank experiment are supported by a numerical investigation with a fully coupled porous medium-free flow model, which accounts for wind turbulence. The experiment consists of a two-dimensional bench-scale soil tank containing homogeneous sand and an overlying wind tunnel. A point source was installed at the bottom of the tank. Gas concentrations were measured at multiple horizontal and vertical locations. Tested conditions include four wind velocities (0.2/1.0/2.0/2.7 m/s), three different gases (helium: light, nitrogen: neutral, and carbon dioxide: heavy), and two transport cases (1: steady-state gas supply from the point source; 2: transport under decreasing concentration gradient, subsequent to termination of gas supply). The model was used to assess flow patterns and gas fluxes across the soil surface. Results demonstrate that flow and transport in the vicinity of the surface are strongly coupled to the overlying wind field. An increase in wind velocity accelerates soil-atmosphere gas exchange. This is due to the effect of the wind profile on soil surface concentrations and due to wind-induced advection, which causes subsurface horizontal transport. The presence of gases with pronounced density difference to air adds additional complexity to the transport through the wind-affected soil layers. Wind impact differs between tested gases. Observed transport is multidimensional and shows that heavy as well as light gases cannot be treated as inert tracers, which applies to many gases in environmental studies. © 2020. The Authors

    Association between Outdoor Air Pollution and Childhood Leukemia: A Systematic Review and Dose-Response Meta-Analysis

    Get PDF
    BACKGROUND: A causal link between outdoor air pollution and childhood leukemia has been proposed, but some older studies suffer from methodological drawbacks. To the best of our knowledge, no systematic reviews have summarized the most recently published evidence and no analyses have examined the dose-response relation. OBJECTIVE: We investigated the extent to which outdoor air pollution, especially as resulting from traffic-related contaminants, affects the risk of childhood leukemia. METHODS: We searched all case-control and cohort studies that have investigated the risk of childhood leukemia in relation to exposure either to motorized traffic and related contaminants, based on various traffic-related metrics (number of vehicles in the closest roads, road density, and distance from major roads), or to measured or modeled levels of air contaminants such as benzene, nitrogen dioxide, 1,3-butadiene, and particulate matter. We carried out a meta-analysis of all eligible studies, including nine studies published since the last systematic review and, when possible, we fit a dose-response curve using a restricted cubic spline regression model. RESULTS: We found 29 studies eligible to be included in our review. In the dose-response analysis, we found little association between disease risk and traffic indicators near the child's residence for most of the exposure range, with an indication of a possible excess risk only at the highest levels. In contrast, benzene exposure was positively and approximately linearly associated with risk of childhood leukemia, particularly for acute myeloid leukemia, among children under 6 y of age, and when exposure assessment at the time of diagnosis was used. Exposure to nitrogen dioxide showed little association with leukemia risk except at the highest levels. DISCUSSION: Overall, the epidemiologic literature appears to support an association between benzene and childhood leukemia risk, with no indication of any threshold effect. A role for other measured and unmeasured pollutants from motorized traffic is also possible. https://doi.org/10.1289/EHP4381

    Understanding the decline of water storage across the Ramser-Lake Naivasha using satellite-based methods

    Get PDF
    It has been postulated that Lake Naivasha, Kenya, has experienced a rapid decrease (and fluctuations) in its spatial extent and level between the years 2002 to 2010. Many factors have been advanced to explain this, with horticultural and floricultural activities, as well as climatic change, featuring prominently. This study offers a multi-disciplinary approach based on several different types of space-borne observations to look at the problem bedeviling Lake Naivasha, which is a Ramsar listed wetland of international importance. The data includes: (1) Gravity Recovery and Climate Experiment (GRACE) time-variable gravity field products to derive total water storage (TWS) variations within a region covering the Lakes Naivasha and Victoria basins; (2) precipitation records based on Tropical Rainfall Measurement Mission (TRMM) products to evaluate the impact of climate change; (3) satellite remote sensing (Landsat) images to map shoreline changes and to correlate these changes over time with possible causes; and (4) satellite altimetry observations to assess fluctuations in the lake’s level. In addition, data from an in situ tide gauge and rainfall stations as well as the output from the African Drought Monitor (ADM) model are used to evaluate the results.This study confirms that Lake Naivasha has been steadily declining with the situation being exacerbated from around the year 2000, with water levels falling at a rate of 10.2 cm/year and a shrinkage in area of 1.04 km2/year. GRACE indicates that the catchment area of 4°×4° that includes Lake Naivasha loses water at a rate of 1.6 cm/year for the period from August 2002 to May 2006, and 1.4 cm/year for the longer period of May 2002 to 2010. Examining the ADM outputs also supports our results of GRACE. Between the time periods 2000–2006 and 2006–2010, the lake surface area decreased by 14.43% and 10.85%, respectively, with a corresponding drop in the water level of 192 cm and 138 cm, respectively, over the same periods. Our results show a correlation coefficient value of 0.68 between the quantity of flower production and the lake’s level for the period 2002–2010 at 95% confidence level, indicating the probable impact of anthropogenic activities on the lake’s level drop

    Linear sampling method for identifying cavities in a heat conductor

    Full text link
    We consider an inverse problem of identifying the unknown cavities in a heat conductor. Using the Neumann-to-Dirichlet map as an input data, we develop a linear sampling type method for the heat equation. A new feature is that there is a freedom to choose the time variable, which suggests that we have more data than the linear sampling methods for the inverse boundary value problem associated with EIT and inverse scattering problem with near field data

    On inconsistency of experimental data on primary nuclei spectra with sea level muon intensity measurements

    Full text link
    For the first time a complete set of the most recent direct data on primary cosmic ray spectra is used as input into calculations of muon flux at sea level in wide energy range Eμ=13105E_\mu=1-3\cdot10^5 GeV. Computations have been performed with the CORSIKA/QGSJET and CORSIKA/VENUS codes. The comparison of the obtained muon intensity with the data of muon experiments shows, that measurements of primary nuclei spectra conform to sea level muon data only up to several tens of GeV and result in essential deficit of muons at higher energies. As it follows from our examination, uncertainties in muon flux measurements and in the description of nuclear cascades development are not suitable to explain this contradiction, and the only remaining factor, leading to this situation, is underestimation of primary light nuclei fluxes. We have considered systematic effects, that may distort the results of the primary cosmic ray measurements with the application of the emulsion chambers. We suggest, that re-examination of these measurements is required with the employment of different hadronic interaction models. Also, in our point of view, it is necessary to perform estimates of possible influence of the fact, that sizable fraction of events, identified as protons, actually are antiprotons. Study of these cosmic ray component begins to attract much attention, but today nothing definite is known for the energies >40>40 GeV. In any case, to realize whether the mentioned, or some other reasons are the sources of disagreement of the data on primaries with the data on muons, the indicated effects should be thoroughly analyzed

    First results of the air shower experiment KASCADE

    Full text link
    The main goals of the KASCADE (KArlsruhe Shower Core and Array DEtector) experiment are the determination of the energy spectrum and elemental composition of the charged cosmic rays in the energy range around the knee at ca. 5 PeV. Due to the large number of measured observables per single shower a variety of different approaches are applied to the data, preferably on an event-by-event basis. First results are presented and the influence of the high-energy interaction models underlying the analyses is discussed.Comment: 3 pages, 3 figures included, to appear in the TAUP 99 Proceedings, Nucl. Phys. B (Proc. Suppl.), ed. by M. Froissart, J. Dumarchez and D. Vignau

    Association of catheter ablation for atrial fibrillation with mortality and stroke: A systematic review and meta-analysis

    Get PDF
    BACKGROUND: Maintenance of sinus rhythm has been associated with lower mortality, but whether atrial fibrillation (AF) ablation per se benefits hard outcomes such as mortality and stroke is still debated. OBJECTIVE: To determine whether AF ablation is associated with a reduction in all-cause mortality and stroke compared with medical therapy alone. METHODS: Literature search looking for both randomized and observational studies comparing AF catheter ablation vs. medical management. Data pooled using random-effects. Risk ratios (RR) with 95% confidence intervals (CI) used as a measure of treatment effect. The primary and secondary outcomes were all-cause mortality and occurrence of cerebrovascular events during follow-up, respectively. RESULTS: Thirty studies were eligible for inclusion, comprising 78,966 patients (25,129 receiving AF ablation and 53,837 on medical treatment) and 233,990 patient-years of follow-up. The pooled data of studies revealed that ablation was associated with lower risk of all-cause mortality: 5.7% vs. 17.9%; RR = 0.44, 95% CI 0.32–0.62, p < 0.001. In a sensitivity analysis by study design, a survival benefit of AF ablation was seen in randomized studies, with no heterogeneity (mortality risk 4.2% vs. 8.9%; RR = 0.55, 95% CI 0.39–0.79, p = 0.001, I2= 0%), and also in observational studies, but with marked heterogeneity (6.1% vs. 18.3%; RR = 0.39, 95% CI 0.26–0.59, p < 0.001, I2= 95%). The mortality benefit in randomized studies was mainly driven by trials performed in patients with left ventricular (LV) dysfunction and heart failure. The pooled risk of a cerebrovascular event was lower in patients receiving AF ablation (2.3% vs. 5.5%; RR = 0.57, 95% CI 0.46–0.70, p < 0.001, I2= 62%), but no difference was seen in randomized trials (2.2% vs. 2.1%; RR = 0.94, 95% CI 0.46–1.94, p = 0.87, I2= 0%). CONCLUSIONS: Ablation of atrial fibrillation associates with a survival benefit compared with medical treatment alone, although evidence is restricted to the setting of heart failure and LV systolic dysfunction

    Two-loop matching of the dipole operators for bsγb \to s \gamma and bsgluonb \to s gluon

    Get PDF
    The order αs\alpha_s corrections to the Wilson coefficients of the dipole operators (O7,O8O_7,O_8) at the matching scale μ=mW\mu =m_W are a crucial ingredient for a complete next- to-leading logarithmic calculation of the branching ratio for bsγb \to s \gamma. Given the phenomenological relevance and the fact that this two-loop calculation has been done so far only by one group [1], we present a detailed re-calculation using a different method. Our results are in complete agreement with those in ref. [1].Comment: 24 pages, latex, 6 figures include

    Family and school social capital, school burnout and academic achievement : a multilevel longitudinal analysis among Finnish pupils

    Get PDF
    Research on the associations between family and school social capital, school burnout and academic achievement in adolescence is scarce and the results are inconclusive. We examined if family and school social capital at the age of 13 predicts lower school burnout and better academic achievement when graduating at the age of 16. Using data from 4467 Finnish adolescents from 117 schools and 444 classes a three-level multilevel analysis was executed. School social capital, the positive and supportive relationships between students and teachers, predicted lower school burnout and better academic achievement among students. Classmates' family social capital had also significance for students' academic achievement. Our results suggest that building school social capital is an important aspect of school health and education policies and practices.Peer reviewe
    corecore