187 research outputs found

    Measurement of Heat Transfer Coefficients in an Agitated Vessel with Tube Baffles

    Get PDF
    Cooling or heating an agitated liquid is a very common operation in many industrial processes. A classic approach is to transfer the necessary heat through the vessel jacket. Another option, frequently used in the chemical and biochemical industries is to use the heat transfer area of vertical tube baffles. In large equipment, e.g. fermentor, the jacket surface is often not sufficient for large heat transfer requirements and tube baffles can help in such cases. It is then important to know the values of the heat transfer coefficients between the baffles and the agitated liquid. This paper presents the results of heat transfer measurements using the transient method when the agitated liquid is periodically heated and cooled by hot and cold water running through tube baffles. Solving the unsteady enthalpy balance, it is possible to determine the heat transfer coefficient. Our results are summarized by the Nusselt number correlations, which describe the dependency on the Reynolds number, and they are compared with other measurements obtained by a steady-state method

    Heat Transfer at the Bottom of a Cylindrical Vessel Impinged by a Swirling Flow from an Impeller in a Draft Tube

    Get PDF
    Heat transfer at the bottom of a cylindrical vessel impinged by a flow with tangential velocity component generated by an axial-flow impeller in a draft tube was measured using the electrodiffusion experimental method. Local values of the Nusselt numbers along the radial coordinate of the heat transfer surface and corresponding mean values are presented for relatively small distances of the draft tube from the impinged surface (0.25 ≤ h / d ≤ 1). Such small distances are typical for mixing of liquids, which ensures good homogenization and increases the intensity of heat and mass transfer in many industrial operations. Results are compared with literature data for unconfined impinging jets with no tangential velocity components. The additional tangential velocity component generated by the rotating impeller significantly influences the hydrodynamics of the impinging jet and decreases the heat transfer intensity in the case of small distances from the impinged surface. A correlation describing the mean Nusselt number at the vessel bottom is proposed. It can be used in a design of a real industrial piece of equipment with heat transfer situated at the bottom. This work is licensed under a Creative Commons Attribution 4.0 International License

    Heat transfer measurements with TOIRT method

    Full text link
    Temperature Oscillation Infra-Red Thermography (TOIRT) method was used to measure heat transfer coefficients between a at surface and a confined impinging jet generated by an impeller in a difusor and baffled vessel. The TOIRT method is based on measuring a phase-lag between the oscillating heat flux applied to the heat transfer surface and the surface temperature response using a contactless infra-red camera. The phase lag is in a direct relationship with the heat transfer coefficient

    Tubulin is actively exported from the nucleus through the Exportin1/CRM1 pathway

    Get PDF
    Microtubules of all eukaryotic cells are formed by α- and β-tubulin heterodimers. In addition to the well known cytoplasmic tubulins, a subpopulation of tubulin can occur in the nucleus. So far, the potential function of nuclear tubulin has remained elusive. In this work, we show that α- and β-tubulins of various organisms contain multiple conserved nuclear export sequences, which are potential targets of the Exportin 1/CRM1 pathway. We demonstrate exemplarily that these NES motifs are sufficient to mediate export of GFP as model cargo and that this export can be inhibited by leptomycin B, an inhibitor of the Exportin 1/CRM1 pathway. Likewise, leptomycin B causes accumulation of GFP-tagged tubulin in interphase nuclei, in both plant and animal model cells. Our analysis of nuclear tubulin content supports the hypothesis that an important function of nuclear tubulin export is the exclusion of tubulin from interphase nuclei, after being trapped by nuclear envelope reassembly during telophase

    Tubulin is actively exported from the nucleus through the Exportin1/CRM1 pathway

    Get PDF
    Microtubules of all eukaryotic cells are formed by α- and β-tubulin heterodimers. In addition to the well known cytoplasmic tubulins, a subpopulation of tubulin can occur in the nucleus. So far, the potential function of nuclear tubulin has remained elusive. In this work, we show that α- and β-tubulins of various organisms contain multiple conserved nuclear export sequences, which are potential targets of the Exportin 1/CRM1 pathway. We demonstrate exemplarily that these NES motifs are sufficient to mediate export of GFP as model cargo and that this export can be inhibited by leptomycin B, an inhibitor of the Exportin 1/CRM1 pathway. Likewise, leptomycin B causes accumulation of GFP-tagged tubulin in interphase nuclei, in both plant and animal model cells. Our analysis of nuclear tubulin content supports the hypothesis that an important function of nuclear tubulin export is the exclusion of tubulin from interphase nuclei, after being trapped by nuclear envelope reassembly during telophase

    Semiconductor Detectors for Observation of Multi-MeV Protons and Ions Produced by Lasers

    Get PDF
    The application of time-of-flight Faraday cups and SiC detectors for the measurement of currents of fast ions emitted by laser-produced plasmas is reported. Presented analysis of signals of ion detectors reflects the design and construction of the detector used. A similarity relation between output signals of ion collectors and semiconductor detectors is established. Optimization of the diagnostic system is discussed with respect to the emission time of electromagnetic pulses interfering with signals induced by the fastest ions accelerated up to velocities of 107 m/s. The experimental campaign on laser-driven ion acceleration was performed at the PALS facility in Prague

    Genotyping a second growth coast redwood forest : a high throughput methodology

    Get PDF
    The idea that excitonic (electronic) coherences are of fundamental importance to natural photosynthesis gained popularity when slowly dephasing quantum beats (QBs) were observed in the two-dimensional electronic spectra of the Fenna–Matthews–Olson (FMO) complex at 77 K. These were assigned to superpositions of excitonic states, a controversial interpretation, as the strong chromophore–environment interactions in the complex suggest fast dephasing. Although it has been pointed out that vibrational motion produces similar spectral signatures, a concrete assignment of these oscillatory signals to distinct physical processes is still lacking. Here we revisit the coherence dynamics of the FMO complex using polarization-controlled two-dimensional electronic spectroscopy, supported by theoretical modelling. We show that the long-lived QBs are exclusively vibrational in origin, whereas the dephasing of the electronic coherences is completed within 240 fs even at 77 K. We further find that specific vibrational coherences are produced via vibronically coupled excited states. The presence of such states suggests that vibronic coupling is relevant for photosynthetic energy transfer

    Open-access quantitative MRI data of the spinal cord and reproducibility across participants, sites and manufacturers

    Get PDF
    In a companion paper by Cohen-Adad et al. we introduce the spine generic quantitative MRI protocol that provides valuable metrics for assessing spinal cord macrostructural and microstructural integrity. This protocol was used to acquire a single subject dataset across 19 centers and a multi-subject dataset across 42 centers (for a total of 260 participants), spanning the three main MRI manufacturers: GE, Philips and Siemens. Both datasets are publicly available via git-annex. Data were analysed using the Spinal Cord Toolbox to produce normative values as well as inter/intra-site and inter/intra-manufacturer statistics. Reproducibility for the spine generic protocol was high across sites and manufacturers, with an average inter-site coefficient of variation of less than 5% for all the metrics. Full documentation and results can be found at https://spine-generic.rtfd.io/. The datasets and analysis pipeline will help pave the way towards accessible and reproducible quantitative MRI in the spinal cord
    corecore