528 research outputs found

    The career satisfaction, future plans, and personal characteristics of Tennessee public school science and mathematics teachers in 2001

    Get PDF
    The effect of state mandates on the supply and demand of science and mathematics teachers in Tennessee is dependent upon the composition of the population of science and mathematics teachers. The purpose of this study was to replicate a study conducted in 1985 by Smith which determined the demographic profile of the general population of secondary school science and mathematics teachers in Tennessee; their general level of job satisfaction; their future plans; and their perceptions of the extent to which they possess job-related skills and abilities, the extent to which they value job-related variables, and the extent to which they have achieved in the teaching profession. Like the previous study, this study also was designed to determine if any relationships existed between the variables. The population of this study consisted of licensed secondary science and mathematics teachers employed in Tennessee during 2001. A survey questionnaire was mailed to a sample of 320 science teachers and 325 mathematics teachers in order to obtain the information described above. Findings of this study included: 1) The typical teacher has over a decade of teaching experience and holds a graduate degree, 2) The highest rated ability for both subgroups was Cooperating with a team. The highest rated value and extent of achievement for both groups was An inner sense of knowing you are doing well, 3) The typical science and mathematics teacher can us computers and educational technology to a moderate or large extent, 4) The typical science and mathematics teacher indicated they were very satisfied with their current employment and their personal growth in their career, and would be extremely likely to choose an education career again, 5) Approximately one-half of the science and mathematics teachers indicated that they plan to leave the public school classroom in five years, and 6) Science teachers related job satisfaction with recognition from supervisors, obtaining professional growth, a chance to contribute to decisions, and using technology in the classroom. Mathematics teachers related job satisfaction with knowing that you are doing well, high salary, recognition by students, and having a chance to contribute to decisions. Recommendations for further research included investigating the gender ratio to identify factors that determine a career choice in education versus a career in other mathematical fields, since the number of female mathematics teachers is twice the number of males

    FARMERS' VEG RISK PERCEPTIONS AND ADOPTION OF VEG CROP INSURANCE

    Get PDF
    Producer survey results are analyzed to determine factors influencing value-enhanced grain (VEG) risk perceptions and VEG crop insurance adoption. VEG production is perceived to be riskier than commodity production. VEG types, input costs, and production problems affect risk perceptions. Factors including previous insurance use impact VEG crop insurance adoption.Risk and Uncertainty,

    Human performance in the modern cockpit

    Get PDF
    This panel was organized by the Aerospace Human Factors Committee to illustrate behavioral research on the perceptual, cognitive, and group processes that determine crew effectiveness in modern cockpits. Crew reactions to the introduction of highly automated systems in the cockpit will be reported on. Automation can improve operational capabilities and efficiency and can reduce some types of human error, but may also introduce entirely new opportunities for error. The problem solving and decision making strategies used by crews led by captains with various personality profiles will be discussed. Also presented will be computational approaches to modeling the cognitive demands of cockpit operations and the cognitive capabilities and limitations of crew members. Factors contributing to aircrew deviations from standard operating procedures and misuse of checklist, often leading to violations, incidents, or accidents will be examined. The mechanisms of visual perception pilots use in aircraft control and the implications of these mechanisms for effective design of visual displays will be discussed

    The Challenge of Aviation Emergency and Abnormal Situations

    Get PDF
    Emergency and abnormal situations occur on flights everyday around the world. They range from minor situations readily managed to extremely serious and highly time-critical situations that deeply challenge the skills of even the most effective crews. How well crews respond to these situations is a function of several interacting sets of issues: (1) the design of non-normal procedures and checklists, (2) design of aircraft systems and automation, (3) specific aspects of the non-normal situation, such as time criticality and complexity of the situation, (4) human performance capabilities and cognitive limitations under high workload and stress, (5) design of training for non-normal situations, (6) philosophies, policies and practices within the industry, and (7) economic and regulatory constraints. Researchers and pilots working on NASA's Emergency and Abnormal Situations project are addressing these issues in a long-range study. In this paper we discuss these issues and illustrate them with examples from recent incidents and accidents

    Facilitating LOS Debriefings: A Training Manual

    Get PDF
    This manual is a practical guide to help airline instructors effectively facilitate debriefings of Line Oriented Simulations (LOS). It is based on a recently completed study of Line Oriented Flight Training (LOFT) debriefings at several U.S. airlines. This manual presents specific facilitation tools instructors can use to achieve debriefing objectives. The approach of the manual is to be flexible so it can be tailored to the individual needs of each airline. Part One clarifies the purpose and objectives of facilitation in the LOS setting. Part Two provides recommendations for clarifying roles and expectations and presents a model for organizing discussion. Part Tree suggests techniques for eliciting active crew participation and in-depth analysis and evaluation. Finally, in Part Four, these techniques are organized according to the facilitation model. Examples of how to effectively use the techniques are provided throughout, including strategies to try when the debriefing objectives are not being fully achieved

    LOFT Debriefings: An Analysis of Instructor Techniques and Crew Participation

    Get PDF
    This study analyzes techniques instructors use to facilitate crew analysis and evaluation of their Line-Oriented Flight Training (LOFT) performance. A rating instrument called the Debriefing Assessment Battery (DAB) was developed which enables raters to reliably assess instructor facilitation techniques and characterize crew participation. Thirty-six debriefing sessions conducted at five U.S. airlines were analyzed to determine the nature of instructor facilitation and crew participation. Ratings obtained using the DAB corresponded closely with descriptive measures of instructor and crew performance. The data provide empirical evidence that facilitation can be an effective tool for increasing the depth of crew participation and self-analysis of CRM performance. Instructor facilitation skill varied dramatically, suggesting a need for more concrete hands-on training in facilitation techniques. Crews were responsive but fell short of actively leading their own debriefings. Ways to improve debriefing effectiveness are suggested

    Performance Data Errors in Air Carrier Operations: Causes and Countermeasures

    Get PDF
    Several airline accidents have occurred in recent years as the result of erroneous weight or performance data used to calculate V-speeds, flap/trim settings, required runway lengths, and/or required climb gradients. In this report we consider 4 recent studies of performance data error, report our own study of ASRS-reported incidents, and provide countermeasures that can reduce vulnerability to accidents caused by performance data errors. Performance data are generated through a lengthy process involving several employee groups and computer and/or paper-based systems. Although much of the airline indUStry 's concern has focused on errors pilots make in entering FMS data, we determined that errors occur at every stage of the process and that errors by ground personnel are probably at least as frequent and certainly as consequential as errors by pilots. Most of the errors we examined could in principle have been trapped by effective use of existing procedures or technology; however, the fact that they were not trapped anywhere indicates the need for better countermeasures. Existing procedures are often inadequately designed to mesh with the ways humans process information. Because procedures often do not take into account the ways in which information flows in actual flight ops and time pressures and interruptions experienced by pilots and ground personnel, vulnerability to error is greater. Some aspects of NextGen operations may exacerbate this vulnerability. We identify measures to reduce the number of errors and to help catch the errors that occur

    Layered Antiferromagnetism Induces Large Negative Magnetoresistance in the van der Waals Semiconductor CrSBr

    Full text link
    The recent discovery of magnetism within the family of exfoliatable van der Waals (vdW) compounds has attracted considerable interest in these materials for both fundamental research and technological applications. However current vdW magnets are limited by their extreme sensitivity to air, low ordering temperatures, and poor charge transport properties. Here we report the magnetic and electronic properties of CrSBr, an air-stable vdW antiferromagnetic semiconductor that readily cleaves perpendicular to the stacking axis. Below its N\'{e}el temperature, TN=132±1T_N = 132 \pm 1 K, CrSBr adopts an A-type antiferromagnetic structure with each individual layer ferromagnetically ordered internally and the layers coupled antiferromagnetically along the stacking direction. Scanning tunneling spectroscopy and photoluminescence (PL) reveal that the electronic gap is ΔE=1.5±0.2\Delta_E = 1.5 \pm 0.2 eV with a corresponding PL peak centered at 1.25±0.071.25 \pm 0.07 eV. Using magnetotransport measurements, we demonstrate strong coupling between magnetic order and transport properties in CrSBr, leading to a large negative magnetoresistance response that is unique amongst vdW materials. These findings establish CrSBr as a promising material platform for increasing the applicability of vdW magnets to the field of spin-based electronics

    Electrical and thermal generation of spin currents by magnetic bilayer graphene

    Get PDF
    Ultracompact spintronic devices greatly benefit from the implementation of two-dimensional materials that provide large spin polarization of charge current together with long-distance transfer of spin information. Here spin-transport measurements in bilayer graphene evidence a strong spin–charge coupling due to a large induced exchange interaction by the proximity of an interlayer antiferromagnet (CrSBr). This results in the direct detection of the spin polarization of conductivity (up to 14%) and a spin-dependent Seebeck effect in the magnetic graphene. The efficient electrical and thermal spin–current generation is the most technologically relevant aspect of magnetism in graphene, controlled here by the antiferromagnetic dynamics of CrSBr. The high sensitivity of spin transport in graphene to the magnetization of the outermost layer of the adjacent antiferromagnet, furthermore, enables the read-out of a single magnetic sublattice. The combination of gate-tunable spin-dependent conductivity and Seebeck coefficient with long-distance spin transport in a single two-dimensional material promises ultrathin magnetic memory and sensory devices based on magnetic graphene
    • …
    corecore