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Memory technology has been revolutionized by the discov-
ery of the giant magnetoresistance1,2 and spin-transfer 
torque effects3,4, which arise from the efficient coupling 

of charge and spin currents in ferromagnetic materials. The spin–
charge coupling is a crucial aspect of magneto-electronic devices, 
namely spin valves that consist of two layers of ferromagnetic 
materials separated by a non-magnetic layer, in which altering the 
relative magnetization orientation of the layers results in a substan-
tial change in resistance5. Such spin valves can be designed in the 
two-dimensional (2D) limit owing to the recent emergence of 2D 
magnetic materials6,7 in the architecture of van der Waals (vdW) 
heterostructures in which exceptional functionalities are achieved 
by integrating the properties of the individual layers8.

Furthermore, most spintronic applications require the strong 
spin–charge coupling in the 2D magnetic materials to be accompa-
nied with a long-distance transfer of the spin information. In this 
regard, graphene is a superior choice with its high charge carrier 
mobility as the absence of hyperfine interactions and small intrin-
sic spin–orbit coupling (SOC) allow for a long spin lifetime9–11. The 
proximity of other materials to graphene can efficiently modulate 
its band structure and induce considerable SOC12,13 and exchange 
interaction14–18, which are essential for spin generation and manipu-
lation. In particular, the proximity effect of 2D magnetic materials 
would bring the technology of ultrathin spin-logic devices to the 
limit when the magnetic behaviour of an individual atomic layer 
directly controls the long-distance information transfer by the spins 
in the neighbouring graphene layer.

The experimental realization of the proximity-induced exchange 
interaction in graphene has been reported, and observed as 
Shubnikov de-Haas oscillations and the Zeeman spin Hall effect19–21, 
anomalous Hall effect (AHE)22,23 and the Hanle precession of 
injected spins by the induced exchange field (Bexch)24–27. Among 
them, the latter is the most unambiguous and reliable approach 
when spin-sensitive Co electrodes are used to directly detect the 
modulation of the spin signal by the Bexch. However, so far Hanle 

precession measurements in graphene have shown a rather weak 
exchange interaction, which only leads to an additional precession 
of the spins around the Bexch. Even though all these experimental 
reports so far have shown evidence for an induced Bexch, the active 
generation of spin currents by graphene both electrically and ther-
mally, as the most technologically relevant aspect of the induced 
magnetism, has not been addressed yet.

In this work, we detected the spin polarization of conductivity 
together with the spin-dependent Seebeck effect (SDSE) in bilayer 
graphene proximity coupled to 2D interlayer antiferromagnetic 
(AFM) CrSBr. The spin-transport measurements directly address 
the conductivity in graphene, and show a strong spin polarization 
up to 14%, which is as large as that in metallic ferromagnets. This 
is evidenced by the efficient electrical and thermal generation of 
spin currents by the magnetic graphene, up to the magnetic tran-
sition temperature of CrSBr. These observations, together with 
AHE measurements, promise major advances in 2D spintronic/
spin-caloritronic circuitry. Additionally, they give insight into the 
magnetic nature of graphene, controlled by the AFM dynamics  
of CrSBr.

The strong exchange interaction results in a considerable spin 
splitting (Δ) of the graphene band structure. The resulting sub-
stantial difference in the density of charge carriers (n) with spin 
parallel (↑) and antiparallel (↓) to the Bexch (Fig. 1a) leads to the 
spin-dependent conductivity. The spin polarization of conductance 
in graphene (PGr) is expected to be efficiently tunable by shifting 
the position of the Fermi energy (EF) with a gate electric field (as 
proposed in Fig. 1b), and to reach the maxima of its absolute value 
when the density of any of the two carrier types is minimal. Such 
an efficient gate tunability of the spin polarization of conductivity 
is the basis for all-electric spin field-effect transistors in spin-logic 
circuitries28. The use of bilayer graphene is particularly encouraged, 
as it can allow for gate tunability of the exchange splitting29–32.

Most of the explored 2D magnetic materials, however, suffer 
from extreme air instability and the low temperature of magnetic 
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transitions33. Here we tackled this obstacle by utilizing the recently 
explored CrSBr 2D crystal (Fig. 1c), which is an air-stable vdW 
semiconductor (bandgap of ~1.5 eV; see Supplementary Section 
18 for transport measurements) with an interlayer AFM ordering 
up to a relatively high Néel temperature of TN ≈ 132 K (refs. 34–37). 
Furthermore, the antiferromagnetism promises ultrafast opera-
tions and robustness against external magnetic fields38 and also is 
expected to be tunable by a gate electric field35,39. Mechanical cleav-
age of the CrSBr crystal results in flakes with a specific rectangular 
geometry that correlates with its in-plane magnetic anisotropy axes 
(Fig. 1d inset). The behaviour of CrSBr magnetization (MCSB) mea-
sured versus an external magnetic field (B) using a superconduct-
ing quantum interference device (SQUID) magnetometer (Fig. 1d) 
displayed a sharp modulation of MCSB when B was applied along 
the y axis. This corresponds to the AFM behaviour with a spin–flip 
transition at an applied magnetic field of BM,y ∼0.2 T (at which MCSB 

switches along the y axis) and defines the y direction as the in-plane 
magnetic easy axis. In contrast, along the x direction, MCSB increased 
gradually with a much higher saturation field (BM,x ≈ 1 T). This is 
a result of the gradual canting of the antiparallel magnetizations 
of the CrSBr layers towards the x direction (the in-plane magnetic 
hard axis). When graphene is brought on top of the CrSBr flake, the 
magnetic behaviour of the outermost CrSBr layer is imprinted in the 
graphene so that the magnetization of graphene (MGr) is expected to 
be collinear with the magnetization of the outermost layer of the 
CrSBr flake (the alignment of MGr and MCSB is further discussed in 
Supplementary Section 13).

Spin-dependent conductivity. The presence of spin-dependent 
conductivity in graphene was directly observed in the spin-valve 
design shown in Fig. 1e. Using the three-terminal (3T) geometry, 
the resistance was measured versus the magnetic field By, applied 
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Fig. 1 | Induced magnetism in bilayer graphene by the proximity of crSBr. a, Spin-dependent density of charge carriers (n↑ and n↓) versus energy of bilayer 
graphene (Gr) in the proximity of CrSBr, with the spin-splitting Δ caused by the exchange interaction. Δ is considered to be constant for the conduction and 
valence bands. MGr, shown by the black arrow, is assumed to be aligned with spin down. b, Dependence of the spin polarization of graphene conductivity PGr 
on the Fermi energy position EF, under the assumptions of the Drude model (Supplementary Section 11). c, Side and top views of the CrSBr crystal structure. 
d, Magnetization of a bulk CrSBr single crystal (MCSB) versus external magnetic field (B), measured using SQUID magnetometry at T = 30 K along the x 
and y directions of the crystal. MCSB is normalized to the saturation magnetization (Ms) value taken at B = 3 T. The SQUID measurement along the hardest 
magnetic z axis is shown in Supplementary Section 14. Inset: an optical micrograph of typical CrSBr flakes, exfoliated on the SiO2 substrate. Scale bar, 5 μm. 
e, Schematics of a 3T spin valve measurement geometry, showing a bilayer graphene/bulk CrSBr heterostructure and ferromagnetic electrodes (Al2O3/
Co). The white and purple arrows represent the magnetizations of the Co electrode and CrSBr (top-most layer), respectively. Spin injection by the Co, 
together with spin-current generation by the magnetic graphene, result in an accumulation of spin-up electrons (red arrows) under the given alignment 
of MCo and MCSB, with PGr > 0 and PCo < 0. f, Optical micrograph of device D1, fabricated with a vdW stack of bilayer graphene and CrSBr (~20 nm) and 
Al2O3(0.8 nm)/Co(30 nm) electrodes. Scale bar, 5 μm. g, Side-view sketch of the spin-valve device, showing a magnetization configuration of MCo (white), 
MGr (black) and MCSB (purple). h, Independent switching of the MCo and MCSB (and so MGr) under an external magnetic field along the y axis (By) leads to 
the unconventional spin-valve measurements in the 3T geometry with the distinct levels of the 3T resistance R3T = V/I (also see Supplementary Section 3). 
The black curve is the R3T measurement starting at By = −0.4 T (trace) and the grey curve is the retrace measurement, starting at By = +0.4 T. The white and 
purple arrows show the MCo and MCSB magnetization configurations for the trace measurement. The change in R3T versus By is proportional to PGr, ΔR3T ∝ PGr 
(Supplementary Section 6). The 3T measurement is performed at T = 4.5 K, with I = 5 μA.
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along the easy axes of the Co electrodes and the CrSBr crystal. As 
shown in Fig. 1g, in the spin-valve heterostructure of Co/Al2O3/
magnetic graphene, the relative orientation of MGr with respect to 
MCo defines the spin polarization of the injected current and there-
fore considerably changes the resistance of the contact between 
graphene and Co (R3T). The abrupt change in resistance (Fig. 1h), 
which depends on the relative orientation of MGr and MCo, resem-
bles the giant magnetoresistance effect, but with the advantage of a 
long-distance spin transfer in the graphene. This would not happen 
in a conventional 3T measurement with a non-magnetic graphene, 
because when the Co magnetization is reversed both spin injection 
and detection simultaneously change sign, which results in no mag-
netoresistance40. Therefore, the observation of the 3T spin-valve 
effect is only possible if the graphene is magnetic, with a non-zero 
spin polarization of conductance PGr.

The spin–charge current coupling in graphene was further stud-
ied by measuring the pure spin current generated by the magne-
tized graphene in a non-local four-terminal (4T) geometry (Fig. 
2a), in which the charge current path can be fully separated from 
the voltage detection circuit. The non-local resistance (Rnl = V/I) 
is measured versus By. In an equivalent measurement on pristine 
graphene, one would observe two (non-local) resistance levels 
associated with the parallel and antiparallel magnetization align-
ment of the injector and detector Co electrodes9. In contrast, here 
we observed three resistance levels that are only possible if the spin 
transport in graphene depends on the relative orientation of MGr (or 
MCSB) with respect to the magnetization of the injector MCo,inj and 
that of the detector MCo,det electrodes. The spin-valve measurement 
was performed with an initial alignment of all three magnetic ele-
ments (injector, detector and CrSBr) at By = −1 T. By increasing the 
field By from 0 T, the magnetizations of the injector and the detector 
electrodes switched to the opposite direction one after the other at 
By ≲ 50 mT. The third switch (at By ≈ 0.21 T) happened at a value of 
the field that is too large to be related to the Co electrodes, given 
their geometrical anisotropy. However, it corresponds well with 
switching field of the MCSB along its easy axis (shown in the SQUID 

magnetometry of Fig. 1d), which directly confirms the non-zero 
spin polarization of the graphene conductivity as a result of the 
proximity-induced magnetism.

The spin polarization in graphene is defined as PGr = (σu − σd)/
(σu + σd), where σu and σd are conductivities for spin-up and 
spin-down channels. Solving the spin-charge coupled diffusive 
transport equations (Supplementary Section 5), we derived the 
non-local resistance as:

Rnl =
λRsq
2W e−L/λ(Pinj − PGr)(Pdet − PGr) (1)

where Pinj and Pdet are the spin polarizations of the injector and 
detector contacts and λ, Rsq, L and W are the spin relaxation length, 
square resistance, length and width, respectively, of the graphene 
channel (in between the injector and detector contacts). The above 
expression can be expanded as:

Rnl ∝ PinjPdet − PGrPdet − PinjPGr + PGrPGr (2)

The PinjPdet term corresponds to a spin signal injected/detected 
via ferromagnetic injector/detector contacts. PinjPGr is due to the 
spin injection via ferromagnetic contact, but the non-local sig-
nal is detected as a charge voltage that builds up because of the 
spin-to-charge conversion that happens in graphene itself and 
PGrPdet corresponds to the reciprocal effect. Finally, PGrPGr is due 
to the spin signal that is both generated and detected by graphene 
itself. The presence of the last term implies that, in principle, spin 
polarized contacts are not required to observe the charge–spin 
current coupling. However, it might not be possible to differen-
tiate it from a spurious background under an applied B when 
only non-magnetic electrodes are used. Here we estimated λ to 
be about 630 nm and obtained the polarizations as PGr ≈ 14% and 
Pinj ≈ Pdet ≈ –24% (Supplementary Sections 4–10). Having the PGr, 
we roughly estimated the exchange splitting to be Δ = 2EFPGr ≈ 20 
meV, which corresponds to Bexch ≈ 170 T, assuming EF to be the same 
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as that in device D3 (Supplementary Section 11). Note that in an 
electron-doped device D2 (Supplementary Section 17), we observed 
an opposite sign for PGr as compared with that in device D1. This is 
an indication of the possible gate tunability of the spin polarization 
of conductivity in graphene, consistent with Fig. 1b.

The modulation of the spin signal under the magnetic field Bx 
applied in-plane, perpendicular to the Co and CrSBr easy axes, fur-
ther confirms the presence of the very large Bexch in the graphene 
(Fig. 2b). We label this experiment a Hanle measurement as a gen-
eralized term, as the effect of the Bexch on the spins is similar to that 
of an external field. In this system, the precession is governed by the 
Bexch as its magnitude is much larger than the Bx. The Bx controls the 
directions of MCo and MCSB (or Bexch) by pulling them towards the x 
axis with saturation fields of BCo ≈ 0.2 T and BCSB ≈ 1.3 T. The Hanle 
curves in Fig. 2b are measured after the initial alignment of the MCo 
and MCSB along the y axis, which sets the magnetization configura-
tion that corresponds to L1, L2 or L3 (as labelled in Fig. 2a). The Bx 
is applied perpendicular to the initial direction of the injected spins. 
For L1, the Rnl has its maximum value at Bx = 0 T, as the injected 
spins are aligned with the Bexch. Once the Bx pulls the MCo along the 
x direction, the strong Bexch fully randomizes the component of the 
injected spins that are perpendicular to it. At Bx ≈ 0.2 T, the magneti-
zation directions of the contacts are saturated along the x axis while 
Bexch is still mostly pointing along the y axis. This yields to only a 
small projection of the injected spins in the direction of Bexch, and 
thus results in a considerable decay of Rnl. The increase to Bx > 0.2 T 
pulls the MCSB further along the x direction with saturation at 1.3 T. 
When the MCSB aligns with MCo once again, the Rnl retrieves its  

initial value. The Hanle curves measured for the antiparallel align-
ment of MCSB with respect to MCo,inj or MCo,det (which correspond to 
configurations L2 or L3 in Fig. 2a) also show a similar behaviour, but 
with the distinct initial value of Rnl at Bx = 0 T. Overall, the behaviour 
of the spin signal in the Hanle curves is determined by the relative 
orientation of the MCo and MGr as the very large Bexch allows for the 
information transfer only by the spins collinear to the MGr. The Fig. 
2b inset shows the Hanle curves derived from the analytical expres-
sion for the Rnl (Supplementary Section 8), which agree well with 
the experimental results.

Spin-dependent Seebeck effect. The strong induced magnetism in 
graphene also led to the observation of a SDSE41,42. Owing to the spin 
dependence of the Seebeck coefficient, we could generate spin cur-
rent by having a thermal gradient in the magnetized graphene chan-
nel (Fig. 3a). We measured the second harmonic signal associated 
with thermal effects due to Joule heating (ΔT ∝ I2). Figure 3b shows 
that the non-local second harmonic resistance (R2ω

nl = V2ω/I2, where 
ω is the frequency of the source current) abruptly changes with 
the switch of the detector magnetization direction (at By ≈ 50 mT), 
which becomes antiparallel to the CrSBr magnetization. The spin 
signal retrieves its initial value when MCSB also switches (at ≈ 0.21 T) 
and becomes parallel to MCo,det again. We observed that the switch 
in the direction of the injector magnetization at By ≈ 35 mT did not 
change the R2ω

nl . This assures the thermal origin of the measured 
spin signal that is generated only by the Joule heating of graphene 
at the injector contact, independent of the injector magnetization. 
In Fig. 3c,d, we demonstrate the modulation of the SDSE spin signal 
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versus Bx measured for the different magnetization configurations 
of the injector, detector and CrSBr (defined for L1, L2 and L3 in Fig. 
3b). The modulation of the R2ω

nl  versus Bx is understood given the 
collinearity of the thermally injected spins with the magnetization 
of graphene, consistent with theoretically calculated curves shown 
in the inset of Fig. 3d (also see Supplementary Section 12). The 
similar behaviour of the second harmonic L1 and L2 Hanle curves 
further confirms that MCo,inj has no influence on the detected signal.

Magnetic phase transition. The generation of the spin currents by 
the magnetized graphene should persist up to the relatively high 
Néel temperature of CrSBr (TN ≈ 132 K). We examined this by the 
local and non-local spin transport measurements at various temper-
atures (Fig. 4). The dependence of the spin signal on temperature 
reflects the temperature dependence of the magnetization of CrSBr 
layers. The spin-valve and Hanle curves, measured non-locally up 
to T = 100 K (Fig. 4a), show a substantial decay of the spin signal. 
This is further confirmed by the two-terminal measurements plot-
ted in Fig. 4b. The considerable spin polarization of graphene allows 
for the detection of large spin signals in the local two-terminal 
geometry, which shows three resistance levels that correspond to 
the magnetization switch of contact C1, C2 and CrSBr. Consistent 
with the non-local measurements, the size of the spin-valve switches 
decreases with a rise in temperature and fully vanishes (below the 
noise level) at T > 100 K. Such a decay is attributed to the ran-
domization of the magnetization of CrSBr and suppression of the 
induced magnetism in graphene, as the decay is much larger than 
that expected from the temperature dependence of Co spin polariza-
tion or spin transport in graphene on non-magnetic substrates11,43. 
Moreover, we observed that, as the temperature increases, BM,y shifts 
towards smaller values (Fig. 4b inset), consistent with the tempera-
ture dependence of the SQUID magnetometry of CrSBr36.

Anomalous Hall effect. The induced magnetism in graphene, 
if accompanied with SOC, is expected to result in the emergence 
of AHE44. We assessed this by interfacing a thin exfoliated CrSBr 
bulk flake with a graphene Hall bar (Fig. 5a) and measuring the 
transverse voltage (Vxy) as a function of the out-of-plane magnetic 

field (Bz) when a longitudinal current was applied. The Bz gradually 
pulled the MCSB out of the 2D plane, which led to an imbalance in 
the density of the out-of-plane spins. The AHE introduces a sizable 
non-linearity in the B dependence of the transverse resistance Rxy. 
The subtraction of the ordinary Hall effect (linear in B) provides us 
with the solitary contribution of the AHE (RAHE) that fully saturates 
at Bz ≈ 4 T, shown for various gate voltages in Fig. 5b. The strength 
of the AHE depends on the position of the EF in the band struc-
ture of the magnetized graphene. Figure 5c shows an increase in the 
extracted non-linearity of the Hall voltage as the EF approaches the 
charge neutrality point and preserves the sign for both electrons and 
holes. Note that the possible presence of the electron–hole puddles 
can contribute to the non-linearity of the Hall voltage when the EF 
is close to the charge neutrality point in a non-homogeneous gra-
phene channel45. The observation of the AHE not only confirms 
the induced magnetism but also indicates an enhanced SOC in the 
graphene that allows for the emergence of additional spin-to-charge 
conversion mechanisms (for example, spin Hall or Rashba–
Edelstein effects)46.

conclusions
These findings present the air-stable graphene/CrSBr vdW het-
erostructure as an exceptional platform for addressing a broad 
range of spin-dependent phenomena5,11 and quantum effects in 
magneto-electronic devices47,48 because the magnetism, SOC and 
long spin lifetime are brought together in a single 2D lattice. The 
direct measurement of the strong spin-polarized conductance 
in graphene in the proximity of an antiferromagnet ensures its 
applications for the prospective 2D memory technology with an 
ultrafast operation and the long-distance transfer of spin infor-
mation. In magnetic tunnel junctions, for instance, the generated 
spin currents by the magnetic graphene can be used to induce a 
spin-transfer torque in 2D magnetic random access memories49,50. 
Moreover, graphene with a high sensitivity of charge and spin 
transport to the magnetization of the outermost layer of the neigh-
bouring 2D AFM CrSBr provides a tool to study the behaviour 
of a single magnetic sublattice that is also promising for magnetic 
sensory systems.
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The electrical and thermal generation of spin currents by the 
magnetized graphene grants the design of spin-logic devices with-
out the need for magnetic injector and/or detector electrodes. This, 
together with the possibility for an efficient modulation of the 
spin-polarization of conductivity by electric fields via local (top) 
gates, allows for all-electric graphene-based spin-logic circuitries. 
These realizations, if accompanied with a large-scale growth of the 
vdW heterostructures and the development of the 2D magnets with 
a magnetic phase transition above room temperature, would lead 
to substantial advances in the 2D spintronics and spin-caloritronics 
technology.
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Methods
Device fabrication. The bilayer graphene and CrSBr flakes were mechanically 
cleaved from their bulk crystals on SiO2/Si substrates using adhesive tapes51. The 
bilayer graphene flakes were identified by their optical contrast with respect to the 
substrate52. The thicknesses of the flakes were verified by atomic force microscopy 
(Supplementary Section 1).

For Device D1, using a dry pick-up technique53, we transferred the bilayer 
graphene on the bulk CrSBr flake with a polycarbonate–polydimethylsiloxane 
stamp. The polycarbonate was removed in chloroform, followed by annealing in an 
Ar/H2 atmosphere for 6 h at 350 °C. The preparation of the vdW stack was followed 
by the fabrication of Al2O3(0.8 nm)/Co(30 nm)/Ti(5 nm)/Au(40 nm) electrodes 
on the vdW stack by an electron-beam lithography technique (using poly(methyl 
methacrylate) as the electron-beam resist). The Ti/Au layers were deposited on the 
Co layer for mechanical strength of the contacts and air protection. The exfoliation 
of all the flakes, atomic force microscopy characterizations and device fabrication 
were performed under exposure to air (ambient conditions) over a timescale of 
about seven days.

For device D3 (AHE), the large area bilayer graphene flake on the SiO2 
substrate was initially etched into a Hall-bar geometry in an O2 plasma 
environment, using a prepatterned poly(methyl methacrylate) membrane as 
the mask. The etching procedure was followed by mechanical removal of the 
poly(methyl methacrylate) membrane to leave the surface of the graphene flake 
residue free. The bulk CrSBr flake, initially exfoliated on a polydimethylsiloxane 
stamp, was transferred on top of the etched graphene, partially covering the Hall 
bar. Device fabrication was completed by the electron-beam lithography of the 
Ti(5 nm)/Au(100 nm) electrodes, deposited by the electron-beam evaporation of 
the metals in an ultrahigh vacuum.

Electrical measurements. A low-frequency (<20 Hz) lock-in technique with 
an a.c. current source up to 10 μA was used for the charge- and spin-transport 
measurements. For the electrical gating, a Keithley source-meter was used as the 
d.c. voltage source. The sample was measured in a helium atmosphere in a cryostat 
with a variable temperature insert and a superconducting magnet. To apply the 
magnetic field in all possible directions (in-plane and out-of-plane) rotatable 
sample holders were used.

SQUID measurements. The d.c. magnetic susceptibility was measured in a 
cryogenic R-700X SQUID magnetometer. The magnetization of a single crystal of 
CrSBr was measured as a function of the magnetic field, applied in a determined 
orientation with respect to the crystal axes.

CrSBr synthesis. CrSBr crystals were grown following a modified method 
developed by Beck36,54. S2Br2 and Cr powder were loaded in a fused silica tube in 
a 1.1:2 stoichiometric ratio, and sealed under vacuum. The tube was heated in a 
multizone tube furnace with a temperature gradient of 1,123 K to 1,223 K for five 
days. Flat, shiny elongated CrSBr crystals formed in the middle of the tube, with 
CrBr3 forming at the cold end and Cr2S3 at the hot end as side products. The black 
CrSBr crystals were cleaned with warm pyridine, water and acetone.

Data availability
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within the paper and its Supplementary Information. Any further related 

information can be provided by the corresponding author upon reasonable request. 
Source data are provided with this paper.
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