817 research outputs found

    Multiple thermoclines are barriers to vertical exchange in the subarctic Pacific during SUPER, May 1984

    Get PDF
    As part of the Subarctic Pacific Ecosystem Research program, we made observations of upper ocean physical and biological properties at 50N; 145W during 12–21 May 1984 from a drifting buoy, instrumented with a thermistor chain and meteorological sensors; a CTD/rosette bottle profiler; a shipboard solar radiometer; and a microstructure profiler equipped with a fast response thermistor and two airfoil velocity probes. At that time, the ocean above the seasonal thermocline was divided by a shallow thermocline step (∼0.5°C) into two layers with different turbulence characteristics and dynamics. The surface layer thermal structure (even in wind speeds up to 14 m s–1) underwent a clear diurnal cycle down to at least 20 m, but the rate of dissipation of turbulent kinetic energy ε did not display day/night differences and was negatively or not correlated with the buoyancy frequency N. Below the shallow thermocline step, ε and N covaried, both reaching maximum values in the permanent pycnocline at 80–90 m. Bio-optical properties of the phytoplankton showed different responses to the different physical environments in the two layers. The initial slope of the relationship between photosynthetic rate and irradiance differed significantly between the two layers; and the phytoplankton in the surface layer displayed strong midday inhibition of fluorescence yield down to 30 m. On the one calm day, both the diurnal thermal signal and the fluorescence inhibition were confined to the top few meters, indicating that the deeper penetration on other days was due to near-surface effects being redistributed throughout the upper layer by wind mixing. The turbulence within the permanent pycnocline appeared to be anisotropic down to viscous scales, effectively eliminating vertical turbulent exchange. Such anisotropy in highly stable layers may favor persistence of “microzones” of enriched nutrients but it precludes calculation from microstructure measurements of accurate estimates of the vertical coefficient of turbulent diffusion Kz, required to estimate the vertical flux of dissolved nitrate through the permanent pycnocline

    Oxygen and nitrogen cycling in the northeast Pacific – Simulations and observations at Station Papa in 2003/2004

    Get PDF
    A long-term air-sea exchange mooring has been maintained in the North Pacific near Ocean Station Papa (OSP, 145W, 50N) since September 2002 as part of the Canadian Surface Ocean Lower Atmosphere Study (C-SOLAS). The mooring provides a new long-term data set for gas measurements. In addition to Conductivity, Temperature and Depth (CTD) recorders at two depths, the mooring is equipped with ProOceanus Gas Tension Devices (GTDs) measuring the total gas pressure at four different depths, two oxygen sensors, two fluorometers for chlorophyll estimates, and an upward-looking 200 kHz echo-sounder for bubble measurements. Chlorophyll data have been added using SeaWiFS imagery and occasional bottle casts. Data collected from June 2003 to June 2004 are compared with simulations from a 1-D coupled atmosphere-ocean-biogeochemical model. The coupled model consists of an atmospheric Single Column Model (SCM), based on the CCCma AGCM (Canadian Centre for Climate Modelling and Analysis-Atmospheric General Circulation Model), the General Ocean Turbulence Model (GOTM) and a 7-component ecosystem model embedded in GOTM. The ecosystem model also includes oxygen, nitrogen, carbon, and silica cycling. The study focuses on simulated and observed N2 and O2 variability. The comparison of these gases allows for separation of physical and biological processes; which can then be evaluated in more detail with the aid of model simulations. The model also tests different parameterizations for saturation and gas exchange, including a formulation for gas injection via bubbles, which affects gas concentrations within the whole mixed layer. For most of the time the model shows good agreement with observations. However, in summer 2003 the observations reveal a strong oxygen and chlorophyll event, which is not reproduced in the standard model run. A weaker signal is seen in May 2004. OSP is a High Nutrient Low Chlorophyll (HNLC) region, limited by the micronutrient iron. Increases in usually low chlorophyll values occur occasionally due to natural iron enrichment (dust deposition, eddy transport, below surface layer transport). Although limitations of 1-D modeling become apparent here, an assumed input of iron in the model explains the differences between simulated and observed oxygen and chlorophyll maxima. The model provides information on the strength and duration of potential iron contribution. No obvious dust events or eddy traverses to supply iron were recorded during this time period. An alternative explanation is entrainment from deeper waters, where occasional iron enrichment is known to occur due to off-shelf transport via eddies or recirculation from the Alaskan shelf

    Transient extreme ultraviolet measurement of element-specific charge transfer dynamics in multiple-material junctions

    Get PDF
    The absorption of solid state materials in complex photonic and optoelectronic devices overlap in the visible spectrum. Due to the overlap of spectral features, ultrafast measurements of charge carrier dynamics and transport is obscured. Here, the element specificity of transient extreme ultraviolet (XUV) spectroscopy is advanced as a probe for studying photoexcited charge transport in multiple-material junctions. The core-hole excited by the XUV transitions also imparts structural information on to the probed electronic transition. Transient XUV can therefore measure electron and averaged phonon dynamics for each elemental species in a junction. Application to polaron measurement in α-Fe_2O_3, valley-specific scattering in Si, and charge transfer in a nanoscale Ni-TiO_2-Si junction will be discussed

    TenTen: A New Array of Multi-TeV Imaging Cherenkov Telescopes

    Get PDF
    The exciting results from H.E.S.S. point to a new population of gamma-ray sources at energies E > 10 TeV, paving the way for future studies and new discoveries in the multi-TeV energy range. Connected with these energies is the search for sources of PeV cosmic-rays (CRs) and the study of multi-TeV gamma-ray production in a growing number of astrophysical environments. TenTen is a proposed stereoscopic array (with a suggested site in Australia) of modest-sized (10 to 30m^2) Cherenkov imaging telescopes with a wide field of view (8 to 10deg diameter) optimised for the E~10 to 100 TeV range. TenTen will achieve an effective area of ~10 km^2 at energies above 10 TeV. We outline here the motivation for TenTen and summarise key performance parameters.Comment: 4 pages, 2 figures, proceedings of the 30th ICRC, Merida, Mexico, 200

    Timing analysis techniques at large core distances for multi-TeV gamma ray astronomy

    Full text link
    We present an analysis technique that uses the timing information of Cherenkov images from extensive air showers (EAS). Our emphasis is on distant, or large core distance gamma-ray induced showers at multi-TeV energies. Specifically, combining pixel timing information with an improved direction reconstruction algorithm, leads to improvements in angular and core resolution as large as ~40% and ~30%, respectively, when compared with the same algorithm without the use of timing. Above 10 TeV, this results in an angular resolution approaching 0.05 degrees, together with a core resolution better than ~15 m. The off-axis post-cut gamma-ray acceptance is energy dependent and its full width at half maximum ranges from 4 degrees to 8 degrees. For shower directions that are up to ~6 degrees off-axis, the angular resolution achieved by using timing information is comparable, around 100 TeV, to the on-axis angular resolution. The telescope specifications and layout we describe here are geared towards energies above 10 TeV. However, the methods can in principle be applied to other energies, given suitable telescope parameters. The 5-telescope cell investigated in this study could initially pave the way for a larger array of sparsely spaced telescopes in an effort to push the collection area to >10 km2. These results highlight the potential of a `sparse array' approach in effectively opening up the energy range above 10 TeV.Comment: Published in Astroparticle Physic

    Variation in lung function as a marker of adherence to oral and inhaled medication in cystic fibrosis

    Get PDF
    Study aim: The aim of this study was to characterise adherence in an adult population with CF and to investigate if variation in lung function was a predictor of adherence to treatment. Patients and methods: Patients aged ≥ 16 years from an adult CF centre undertook adherence measures by medication possession ratio (MPR) and self-report and were assigned to one of three adherence categories (<50%, 50-<80%, 80% and above) by their composite score (MPR). Ordinal regression was used to identify predictors of adherence including coefficient variation measures for forced expiratory volume in 1 second (FEV1), weight and C-reactive protein, measured up to 6 and 12 months. Results: MPR data for 106 of 249 patients [mean age 29.8 (±9.2) years] was retrieved, indicating a mean adherence of 63%. Coefficient of variation FEV1 was inversely related to adherence and was a univariate predictor of adherence (6 months: 0.92 [0.87-0.98] p= 0.005 and 12 months: 0.94 [0.93-0.99], p=0.03]) and remained significant in the final models. The coefficient variation of weight and C-reactive protein were not predictive of adherence. Conclusions: Coefficient of variation FEV1 was identified as an objective predictor of adherence. Further evaluation of this potential marker of adherence is now required

    Influence of turbulent advection on a phytoplankton ecosystem with nonuniform carrying capacity

    Get PDF
    In this work we study a plankton ecosystem model in a turbulent flow. The plankton model we consider contains logistic growth with a spatially varying background carrying capacity and the flow dynamics are generated using the two-dimensional (2D) Navier-Stokes equations. We characterize the system in terms of a dimensionless parameter, γ TB / TF, which is the ratio of the ecosystem biological time scales TB and the flow time scales TF. We integrate this system numerically for different values of γ until the mean plankton reaches a statistically stationary state and examine how the steady-state mean and variance of plankton depends on γ. Overall we find that advection in the presence of a nonuniform background carrying capacity can lead to very different plankton distributions depending on the time scale ratio γ. For small γ the plankton distribution is very similar to the background carrying capacity field and has a mean concentration close to the mean carrying capacity. As γ increases the plankton concentration is more influenced by the advection processes. In the largest γ cases there is a homogenization of the plankton concentration and the mean plankton concentration approaches the harmonic mean, 1/K -1. We derive asymptotic approximations for the cases of small and large γ. We also look at the dependence of the power spectra exponent, β, on γ where the power spectrum of plankton is k-β. We find that the power spectra exponent closely obeys β=1+2/γ as predicted by earlier studies using simple models of chaotic advection

    Dealing with uncertainty in GHG inventories: How to go about it?

    Get PDF
    The assessment of greenhouse gases emitted to and removed from the atmosphere is high on both political and scientific agendas. Under the United Nations Framework Convention on Climate Change, Parties to the Convention publish annual or periodic national inventories of greenhouse gas emissions and removals. Policymakers use these inventories to develop strategies and policies for emission reductions and to track the progress of these policies. However, greenhouse gas inventories (whether at the global, national, corporate, or other level) contain uncertainty for a variety of reasons, and these uncertainties have important scientific and policy implications. For scientific, political, and economic reasons it is important to deal with the uncertainty of emissions estimates proactively. Proper treatment of uncertainty affects everything from our understanding of the physical system to the economics of mitigation strategies and the politics of mitigation agreements. A comprehensive and consistent understanding of, and a framework for dealing with, the uncertainty of emissions estimates should have a large impact on the functioning and effectiveness of the Kyoto Protocol and its successor. This chapter attempts to pull together relevant fragments of knowledge, allowing us to get a better picture of how to go about dealing with the uncertainty in greenhouse gas inventories

    Sinking particle fluxes from the euphotic zone over the continental slope of an eastern boundary current region

    Get PDF
    We analyze data from sediment traps and current meters moored at two locations 100 km apart over the Vancouver Island continental slope during the spring and summer of 1990. Time-series of sinking particle fluxes, major biogenic components (biogenic silica, calcium carbonate, and particulate organic carbon and nitrogen), and stable isotopic composition (δ13Corganic and δ15Ntotal) were determined on samples obtained with sequential sediment traps moored at 200–250 m depth. Associated water property data were obtained from CTD/Rosette profiles taken during trap service periods and from current meters positioned in the surface layer and near the sediment trap. These data indicate that the two locations (a southern site J and a northern site NJ) were hydrographically distinct during the investigation. At site J, we found evidence for frequent upwelling events and more variability in the upper layer water properties. The main difference in the sinking fluxes of particles between the two sites was the occurrence of a one-week event at the end of May at J that contributed about one third of the total particle flux during the sampling period. Otherwise, the total flux collected during the study and the flux of major biogenic particles were similar at both sites. Silica shells dominated the flux of particles, particularly during the spring and early summer period. At both sites, particulate organic carbon rather than calcium carbonate was the main contributor to particulate carbon fluxes. The δ13Corganic showed marked variations during the sampling period at both sites likely due to variations in the growth rate of phytoplankton and in species composition. In comparison, variations in nitrate availability appear to dominate the changes in δ15Ntotal
    corecore