65,372 research outputs found
Groundwater research and management: integrating science into management decisions. Proceedings of IWMI-ITP-NIH International Workshop on "Creating Synergy Between Groundwater Research and Management in South and Southeast Asia," Roorkee, India, 8-9 February 2005
Groundwater management / Governance / Groundwater development / Artificial recharge / Water quality / Aquifers / Groundwater irrigation / Water balance / Simulation models / Watershed management / Water harvesting / Decision making / South East Asia / Bangladesh / China / India / Nepal / Pakistan / Syria
All fiber polarization insensitive detection for spectrometer based optical coherence tomography using optical switch
Polarization dependent image artifacts are common in optical coherence tomography imaging. Polarization insensitive detection scheme for swept source based optical coherence tomography systems is well established but is yet to be demonstrated for all fiber spectrometer-based Fourier domain optical coherence tomography systems. In this work, we present an all fiber polarization insensitive detection scheme for spectrometer based optical coherence tomography systems. Images from chicken breast muscle tissue were acquired to demonstrate the effectiveness of this scheme for the conventional Fourier domain optical coherence tomography system
Classification of Multipartite Entanglement via Negativity Fonts
Partial transposition of state operator is a well known tool to detect
quantum correlations between two parts of a composite system. In this letter,
the global partial transpose (GPT) is linked to conceptually multipartite
underlying structures in a state - the negativity fonts. If K-way negativity
fonts with non zero determinants exist, then selective partial transposition of
a pure state, involving K of the N qubits (K leq N) yields an operator with
negative eigevalues, identifying K-body correlations in the state. Expansion of
GPT interms of K-way partially transposed (KPT) operators reveals the nature of
intricate intrinsic correlations in the state. Classification criteria for
multipartite entangled states, based on underlying structure of global partial
transpose of canonical state, are proposed. Number of N-partite entanglement
types for an N qubit system is found to be 2^{N-1}-N+2, while the number of
major entanglement classes is 2^{N-1}-1. Major classes for three and four qubit
states are listed. Subclasses are determined by the number and type of
negativity fonts in canonical state.Comment: 5 pages, No figures, Corrected typo
Radiating spherical collapse with heat flow
We present here a simple model of radiative gravitational collapse with
radial heat flux which describes qualitatively the stages close to the
formation of a superdense cold star. Starting with a static general solution
for a cold star, the model can generate solutions for the earlier evolutionary
stages. The temporal evolution of the model is specified by solving the
junction conditions appropriate for radiating gravitational collapse.Comment: 13 pages, including 3 figures, submitted to IJMP-
Strain-driven light polarization switching in deep ultraviolet nitride emitters
Residual strain plays a critical role in determining the crystalline quality
of nitride epitaxial layers and in modifying their band structure; this often
leads to several interesting physical phenomena. It is found, for example, that
compressive strain in AlxGa1-xN layers grown on AlyGa1-yN (x<y) templates
results in an anti-crossing of the valence bands at considerably much higher Al
composition than expected. This happens even in the presence of large and
negative crystal field splitting energy for AlxGa1-xN layers. A judicious
magnitude of the compressive strain can support vertical light emission (out of
the c-plane) from AlxGa1-xN quantum wells up to x\approx 0.80, which is
desirable for the development of deep ultraviolet light-emitting diodes
designed to operate below 250nm with transverse electric polarization
characteristics
Role of isospin physics in supernova matter and neutron stars
We investigate the liquid-gas phase transition of hot protoneutron stars
shortly after their birth following supernova explosion and the composition and
structure of hyperon-rich (proto)neutron stars within a relativistic mean-field
model where the nuclear symmetry energy has been constrained from the measured
neutron skin thickness of finite nuclei. Light clusters are abundantly formed
with increasing temperature well inside the neutrino-sphere for an uniform
supernova matter. Liquid-gas phase transition is found to suppress the cluster
yield within the coexistence phase as well as decrease considerably the
neutron-proton asymmetry over a wide density range. We find symmetry energy has
a modest effect on the boundaries and the critical temperature for the
liquid-gas phase transition, and the composition depends more sensitively on
the number of trapped neutrinos and temperature of the protoneutron star. The
influence of hyperons in the dense interior of stars makes the overall equation
of state soft. However, neutrino trapping distinctly delays the appearance of
hyperons due to abundance of electrons. We also find that a softer symmetry
energy further makes the onset of hyperon less favorable. The resulting
structures of the (proto)neutron stars with hyperons and with liquid-gas phase
transition are discussed.Comment: 11 pages, 7 figures, RevTe
Electrochemical incineration of wastes
The novel technology of waste removal in space vehicles by electrochemical methods is presented to convert wastes into chemicals that can be eventually recycled. The important consideration for waste oxidation is to select a right kind of electrode (anode) material that should be stable under anodic conditions and also a poor electrocatalyst for oxygen and chlorine evolution. On the basis of long term electrolysis experiments on seven different electrodes and on the basis of total organic carbon reduced, two best electrodes were identified. The effect of redox ions on the electrolyte was studied. Though most of the experiments were done in mixtures of urine and waste, the experiments with redox couples involved 2.5 M sulfuric acid in order to avoid the precipitation of redox ions by urea. Two methods for long term electrolysis of waste were investigated: (1) the oxidation on Pt and lead dioxide electrodes using the galvanostatic methods; and (2) potentiostatic method on other electrodes. The advantage of the first method is the faster rate of oxidation. The chlorine evolution in the second method is ten times less then in the first. The accomplished research has shown that urine/feces mixtures can be oxidized to carbon dioxide and water, but current densities are low and must be improved. The perovskite and Ti4O7 coated with RuO2 are the best electrode materials found. Recent experiment with the redox agent improves the current density, however, sulphuric acid is required to keep the redox agent in solution to enhance oxidation effectively. It is desirable to reduce the use of acid and/or find substitutes
- …
