2,233 research outputs found

    Field Tuning the G-Factor in InAs Nanowire Double Quantum Dots

    Full text link
    We study the effects of magnetic and electric fields on the g-factors of spins confined in a two-electron InAs nanowire double quantum dot. Spin sensitive measurements are performed by monitoring the leakage current in the Pauli blockade regime. Rotations of single spins are driven using electric-dipole spin resonance. The g-factors are extracted from the spin resonance condition as a function of the magnetic field direction, allowing determination of the full g-tensor. Electric and magnetic field tuning can be used to maximize the g-factor difference and in some cases altogether quench the EDSR response, allowing selective single spin control.Comment: Related papers at http://pettagroup.princeton.ed

    Charge and spin state readout of a double quantum dot coupled to a resonator

    Full text link
    State readout is a key requirement for a quantum computer. For semiconductor-based qubit devices it is usually accomplished using a separate mesoscopic electrometer. Here we demonstrate a simple detection scheme in which a radio-frequency resonant circuit coupled to a semiconductor double quantum dot is used to probe its charge and spin states. These results demonstrate a new non-invasive technique for measuring charge and spin states in quantum dot systems without requiring a separate mesoscopic detector

    Radio frequency charge sensing in InAs nanowire double quantum dots

    Full text link
    We demonstrate charge sensing of an InAs nanowire double quantum dot (DQD) coupled to a radio frequency (rf) circuit. We measure the rf signal reflected by the resonator using homodyne detection. Clear single dot and DQD behavior are observed in the resonator response. rf-reflectometry allows measurements of the DQD charge stability diagram in the few-electron regime even when the dc current through the device is too small to be measured. For a signal-to-noise ratio of one, we estimate a minimum charge detection time of 350 microseconds at interdot charge transitions and 9 microseconds for charge transitions with the leads.Comment: Related papers at http://pettagroup.princeton.ed

    Nonadiabatic quantum control of a semiconductor charge qubit

    Full text link
    We demonstrate multipulse quantum control of a single electron charge qubit. The qubit is manipulated by applying nonadiabatic voltage pulses to a surface depletion gate and readout is achieved using a quantum point contact charge sensor. We observe Ramsey fringes in the excited state occupation in response to a pi/2 - pi/2 pulse sequence and extract T2* ~ 60 ps away from the charge degeneracy point. Simulations suggest these results may be extended to implement a charge-echo by reducing the interdot tunnel coupling and pulse rise time, thereby increasing the nonadiabaticity of the pulses.Comment: Related papers at http://pettagroup.princeton.ed

    Quantum Coherence in a One-Electron Semiconductor Charge Qubit

    Full text link
    We study quantum coherence in a semiconductor charge qubit formed from a GaAs double quantum dot containing a single electron. Voltage pulses are applied to depletion gates to drive qubit rotations and non-invasive state readout is achieved using a quantum point contact charge detector. We measure a maximum coherence time of ~7 ns at the charge degeneracy point, where the qubit level splitting is first-order-insensitive to gate voltage fluctuations. We compare measurements of the coherence time as a function of detuning with predictions from a 1/f noise model.Comment: Related papers at http://pettagroup.princeton.ed

    A Semiconductor Nanowire-Based Superconducting Qubit

    Full text link
    We introduce a hybrid qubit based on a semiconductor nanowire with an epitaxially grown superconductor layer. Josephson energy of the transmon-like device ("gatemon") is controlled by an electrostatic gate that depletes carriers in a semiconducting weak link region. Strong coupling to an on-chip microwave cavity and coherent qubit control via gate voltage pulses is demonstrated, yielding reasonably long relaxation times (0.8 {\mu}s) and dephasing times (1 {\mu}s), exceeding gate operation times by two orders of magnitude, in these first-generation devices. Because qubit control relies on voltages rather than fluxes, dissipation in resistive control lines is reduced, screening reduces crosstalk, and the absence of flux control allows operation in a magnetic field, relevant for topological quantum information

    Voltage-Controlled Superconducting Quantum Bus

    Full text link
    We demonstrate the ability of an epitaxial semiconductor-superconductor nanowire to serve as a field-effect switch to tune a superconducting cavity. Two superconducting gatemon qubits are coupled to the cavity, which acts as a quantum bus. Using a gate voltage to control the superconducting switch yields up to a factor of 8 change in qubit-qubit coupling between the on and off states without detrimental effect on qubit coherence. High-bandwidth operation of the coupling switch on nanosecond timescales degrades qubit coherence
    corecore