321 research outputs found

    Influence of carbon on spin reorientation processes in Er 2-xRxFe14C (R = Gd, Pr) - Mossbauer and magnetometric studies

    Get PDF
    The Er2¡xRxFe14C (R=Gd, Pr) polycrystalline compounds have been synthesized and investigated with 57Fe Mössbauer spectroscopy and magnetic measurements. The spin reorientation phenomena were studied extensively by narrow step temperature scanning in the neighborhood of the spin reorientation temperature. Obtained Mössbauer spectra were analyzed using a procedure of simultaneous fitting and the transmission integral approach. Consistent description of Mössbauer spectra were obtained, temperature and composition dependencies of hyperfine interaction parameters and subspectra contributions were derived from fits and the transition temperatures were determined for all the compounds studied. Initial magnetization versus temperature measurements (in zero and non-zero external field) for Er2¡xGdxFe14C compounds allowed to establish the temperature regions of reorientation, change of magnetization value during the transition process. The results obtained with different methods were analyzed and the spin arrangement diagrams were constructed. Data obtained for Er2¡xGdxFe14C were compared with those for Er2¡xGdxFe14B series

    Analysis of filtration processes in small experimental embankment based on numerical modeling and temperature measurements

    Get PDF
    Abstract This paper presents analysis of filtration processes in small experimental embankment. The analysis is based on field measurements and numerical modeling. The measurements were performed on experimental embankment, which size is in scale 1:5 comparing to typical river embankments in Poland. The measurements are made during flooding experiment. Two parameters during experiment ware measured: pore pressure and temperature. Additionally, the thermograpical observation of air side of embankment was conducted. The FLAC 7.0 software was used in 2D numerical modeling. Modification the parameters of the model allowed to fit the modelled data to the measured data

    Evolving Spatially Aggregated Features from Satellite Imagery for Regional Modeling

    Full text link
    Satellite imagery and remote sensing provide explanatory variables at relatively high resolutions for modeling geospatial phenomena, yet regional summaries are often desirable for analysis and actionable insight. In this paper, we propose a novel method of inducing spatial aggregations as a component of the machine learning process, yielding regional model features whose construction is driven by model prediction performance rather than prior assumptions. Our results demonstrate that Genetic Programming is particularly well suited to this type of feature construction because it can automatically synthesize appropriate aggregations, as well as better incorporate them into predictive models compared to other regression methods we tested. In our experiments we consider a specific problem instance and real-world dataset relevant to predicting snow properties in high-mountain Asia

    Phantom cosmology as a scattering process

    Get PDF
    We study the general chaotic features of dynamics of the phantom field modelled in terms of a single scalar field conformally coupled to gravity. We demonstrate that the dynamics of the FRW model with dark energy in the form of phantom field can be regarded as a scattering process of two types: multiple chaotic and classical non-chaotic. It depends whether the spontaneously symmetry breaking takes place. In the first class of models with the spontaneously symmetry breaking the dynamics is similar to the Yang-Mills theory. We find the evidence of a fractal structure in the phase space of initial conditions. We observe similarities to the phenomenon of a multiple scattering process around the origin. In turn the class of models without the spontaneously symmetry breaking can be described as the classical non-chaotic scattering process and the methods of symbolic dynamic are also used in this case. We show that the phantom cosmology can be treated as a simple model with scattering of trajectories which character depends crucially on a sign of a square of mass. We demonstrate that there is a possibility of chaotic behavior in the flat Universe with a conformally coupled phantom field in the system considered on non-zero energy level. We obtain that the acceleration is a generic feature in the considered model without the spontaneously symmetry breaking. We observe that the effective EOS coefficient oscillates and then approach to w=−1w=-1.Comment: RevTeX4, 19 pages, 17 figures; v2 - added a comment on the Yang-Mills cosmological models and bibliography; v3 - added a section on acceleration, 2 figures, some references

    Microscopic derivation of Ginzburg-Landau equations for coexistent states of superconductivity and magnetism

    Full text link
    Ginzburg-Landau (GL) equations for the coexistent states of superconductivity and magnetism are derived microscopically from the extended Hubbard model with on-site repulsive and nearest-neighbor attractive interactions. In the derived GL free energy a cubic term that couples the spin-singlet and spin-triplet components of superconducting order parameters (SCOP) with magnetization exists. This term gives rise to a spin-triplet SCOP near the interface between a spin-singlet superconductor and a ferromagnet, consistent with previous theoretical studies based on the Bogoliubov de Gennes method and the quasiclassical Green's function theory. In coexistent states of singlet superconductivity and antiferromagnetism it leads to the occurrence of pi-triplet SCOPs.Comment: 18 page

    Classical big-bounce cosmology: dynamical analysis of a homogeneous and irrotational Weyssenhoff fluid

    Get PDF
    A dynamical analysis of an effective homogeneous and irrotational Weyssenhoff fluid in general relativity is performed using the 1+3 covariant approach that enables the dynamics of the fluid to be determined without assuming any particular form for the space-time metric. The spin contributions to the field equations produce a bounce that averts an initial singularity, provided that the spin density exceeds the rate of shear. At later times, when the spin contribution can be neglected, a Weyssenhoff fluid reduces to a standard cosmological fluid in general relativity. Numerical solutions for the time evolution of the generalised scale factor in spatially-curved models are presented, some of which exhibit eternal oscillatory behaviour without any singularities. In spatially-flat models, analytical solutions for particular values of the equation-of-state parameter are derived. Although the scale factor of a Weyssenhoff fluid generically has a positive temporal curvature near a bounce, it requires unreasonable fine tuning of the equation-of-state parameter to produce a sufficiently extended period of inflation to fit the current observational data.Comment: 34 pages, 18 figure

    Electron transport through strongly interacting quantum dot coupled to normal metal and superconductor

    Full text link
    We study the electron transport through the quantum dot coupled to the normal metal and BCS-like superconductor (N - QD - S) in the presence of the Kondo effect and Andreev scattering. The system is described by the single impurity Anderson model in the limit of strong on-dot interaction. We use recently proposed equation of motion technique for Keldysh nonequilibrium Green's function together with the modified slave boson approach to study the electron transport. We derive formula for the current which contains various tunneling processes and apply it to study the transport through the system. We find that the Andreev conductance is strongly suppressed and there is no zero-bias (Kondo) anomaly in the differential conductance. We discuss effects of the particle-hole asymmetry in the electrodes as well as the asymmetry in the couplings.Comment: Supercond. Sci. Technol. - accepted for publicatio

    Non-equilibrium Kondo effect in asymmetrically coupled quantum dot

    Full text link
    The quantum dot asymmetrically coupled to the external leads has been analysed theoretically by means of the equation of motion (EOM) technique and the non-crossing approximation (NCA). The system has been described by the single impurity Anderson model. To calculate the conductance across the device the non-equilibrium Green's function technique has been used. The obtained results show the importance of the asymmetry of the coupling for the appearance of the Kondo peak at nonzero voltages and qualitatively explain recent experiments.Comment: 7 pages, 6 figures, Physical Review B (accepted for publication

    Numerical Renormalization Group Approach to a Quantum Dot Coupled to Normal and Superconducting Leads

    Full text link
    We study transport through a quantum dot coupled to normal and superconducting leads using the numerical renormalization group method. We show that the low-energy properties of the system are described by the local Fermi liquid theory despite of the superconducting correlations penetrated into the dot due to a proximity effect. We calculate the linear conductance due to the Andreev reflection in the presence of the Coulomb interaction. It is demonstrated that the maximum structure appearing in the conductance clearly characterizes a crossover between two distinct spin-singlet ground states, i.e. the superconducting singlet state and the Kondo singlet state. It is further elucidated that the gate-voltage dependence of the conductance shows different behavior in the superconducting singlet region from that in the Kondo singlet region.Comment: 10 pages, 6 figures; a typo in eq. (B.5) corrected, which does not affect any other results of the pape
    • …
    corecore