62 research outputs found

    Scaling up research on family justice using large-scale administrative data: an invitation to the socio-legal community

    Get PDF
    This article outlines the value of administrative data for family justice research. Although socio-legal scholars have extended their research beyond purely theoretical or doctrinal analyses, studies using large-scale digital datasets remain few in number. As new opportunities arise to link large-scale administrative datasets across health, education, welfare and justice, it is vital that the community of family justice researchers and analysts are supported to deliver research based on entire service or family court populations. In this context, this article provides a definition of administrative data, before outlining the potential of single, linked or blended administrative data sets for family justice research. The remaining sections of the article speak to questions that are pertinent to this particular academic community, including the distinctive contribution of the socio-legal scholar to interdisciplinary teams and the place of data providers in collaborative research. Drawing on the sociological concept of ‘publics’, the final section considers the multiple interest groups whose social licence must be secured, when personal records are used to understand the relationship between law and family life

    Maternal health, pregnancy and birth outcomes for women involved in care proceedings in Wales: a linked data study

    Get PDF
    Background: Under the Children Act 1989, local authorities in Wales, UK, can issue care proceedings if they are concerned about the welfare of a child, which can lead to removal of a child from parents. For mothers at risk of child removal, timely intervention during pregnancy may avert the need for this and improve maternal/fetal health; however, little is known about this specific population during the antenatal period. The study examined maternity characteristics of mothers whose infants were subject to care proceedings, with the aim of informing preventative interventions targeted at high risk mothers. Methods: Anonymised administrative data from Cafcass Cymru, who provide child-focused advice and support for family court proceedings in Wales, were linked to population-based maternity and health records held within the Secure Anonymised Information Linkage Databank. Linked data were available for 1111 birth mothers of infants involved in care proceedings between 2015 and 2018. Findings were benchmarked with reference to an age-deprivation-matched comparison group (n = 23,414), not subject to care proceedings but accessing maternity services during this period. Demographic characteristics, maternal health, reproductive history, interaction with midwifery services, and pregnancy and birth outcomes were examined. Descriptive and statistical tests of independence were used. Results: Half of the women in the cohort (49.4%) resided in the most deprived areas. They were more likely to be younger at entry to motherhood (63.5% <21 years-of-age compared to 42.7% in the comparison group), to have mental health (28.6% compared to 8.2%) and substance use issues (10.4% compared to 0.6%) and to smoke (62.7% compared to 24.8%) during pregnancy. The majority first engaged with maternity services within their first trimester of pregnancy (63.5% compared to 84.4%). Babies were more likely to be born preterm (14.2% compared to 6.7%) and, for full-term babies, to have low birthweights (8.0% compared to 2.8%). Conclusion: This novel linkage study highlights multiple vulnerabilities experienced by pregnant mothers who have experienced care proceedings concerning an infant. Policy and practice colleagues require a clearer picture of women’s needs if child protection and health services are to offer effective services which prevent the need for family court proceedings and infant removal

    Two years of satellite-based carbon dioxide emission quantification at the world's largest coal-fired power plants

    Get PDF
    Carbon dioxide (CO2) emissions from combustion sources are uncertain in many places across the globe. Satellites have the ability to detect and quantify emissions from large CO2 point sources, including coal-fired power plants. In this study, we routinely made observations with the PRecursore IperSpettrale della Missione Applicativa (PRISMA) satellite imaging spectrometer and the Orbiting Carbon Observatory-3 (OCO-3) instrument aboard the International Space Station at over 30 coal-fired power plants between 2021 and 2022. CO2 plumes were detected in 50 % of the acquired PRISMA scenes, which is consistent with the combined influence of viewing parameters on detection (solar illumination and surface reflectance) and unknown factors (e.g., daily operational status). We compare satellite-derived emission rates to in situ stack emission observations and find average agreement to within 27 % for PRISMA and 30 % for OCO-3, although more observations are needed to robustly characterize the error. We highlight two examples of fusing PRISMA with OCO-2 and OCO-3 observations in South Africa and India. For India, we acquired PRISMA and OCO-3 observations on the same day and used the high-spatial-resolution capability of PRISMA (30 m spatial/pixel resolution) to partition relative contributions of two distinct emitting power plants to the net emission. Although an encouraging start, 2 years of observations from these satellites did not produce sufficient observations to estimate annual average emission rates within low (&lt;15 %) uncertainties. However, as the constellation of CO2-observing satellites is poised to significantly improve in the coming decade, this study offers an approach to leverage multiple observation platforms to better quantify and characterize uncertainty for large anthropogenic emission sources.</p

    How should performance in EBUS mediastinal staging in lung cancer be measured?

    Get PDF
    There has been a paradigm shift in mediastinal staging algorithms in non-small cell lung cancer over the last decade in the United Kingdom (UK). This has seen endoscopic nodal staging (predominantly endobronchial ultrasound, EBUS) almost replace surgical staging (predominantly mediastinoscopy) as the pathological staging procedure of first choic

    Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane

    Full text link
    [EN] We review the capability of current and scheduled satellite observations of atmospheric methane in the shortwave infrared (SWIR) to quantify methane emissions from the global scale down to point sources. We cover retrieval methods, precision and accuracy requirements, inverse and mass balance methods for inferring emissions, source detection thresholds, and observing system completeness. We classify satellite instruments as area flux mappers and point source imagers, with complementary attributes. Area flux mappers are high-precision (< 1 %) instruments with 0.1-10 km pixel size designed to quantify total methane emissions on regional to global scales. Point source imagers are fine-pixel (< 60 m) instruments designed to quantify individual point sources by imaging of the plumes. Current area flux mappers include GOSAT (2009-present), which provides a high-quality record for interpretation of long-term methane trends, and TROPOMI (2018-present), which provides global continuous daily mapping to quantify emissions on regional scales. These instruments already provide a powerful resource to quantify national methane emissions in support of the Paris Agreement. Current point source imagers include the GHGSat constellation and several hyperspectral and multispectral land imaging sensors (PRISMA, Sentinel-2, Landsat-8/9, WorldView-3), with detection thresholds in the 100-10 000 kg h(-1) range that enable monitoring of large point sources. Future area flux mappers, including MethaneSAT, GOSAT-GW, Sentinel-5, GeoCarb, and CO2M, will increase the capability to quantify emissions at high resolution, and the MERLIN lidar will improve observation of the Arctic. The averaging times required by area flux mappers to quantify regional emissions depend on pixel size, retrieval precision, observation density, fraction of successful retrievals, and return times in a way that varies with the spatial resolution desired. A similar interplay applies to point source imagers between detection threshold, spatial coverage, and return time, defining an observing system completeness. Expanding constellations of point source imagers including GHGSat and Carbon Mapper over the coming years will greatly improve observing system completeness for point sources through dense spatial coverage and frequent return times.This research has been supported by the Collaboratory to Advance Methane Science (CAMS) and the National Aeronautics and Space Administration, Earth Sciences Division (grant no. NNH20ZDA001N-CMS).Jacob, DJ.; Varon, DJ.; Cusworth, DH.; Dennision, PE.; Frankenberg, C.; Gautam, R.; Guanter-Palomar, LM.... (2022). Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane. ATMOSPHERIC CHEMISTRY AND PHYSICS. 14:9617-9646. https://doi.org/10.5194/acp-22-9617-2022961796461
    • …
    corecore