3,685 research outputs found

    Detection of liquid xenon scintillation light with a Silicon Photomultiplier

    Full text link
    We have studied the feasibility of a silicon photomultiplier (SiPM) to detect liquid xenon (LXe) scintillation light. The SiPM was operated inside a small volume of pure LXe, at -95 degree Celsius, irradiated with an internal Am-241 alpha source. The gain of the SiPM at this temperature was estimated to be 1.8 x 10^6 with bias voltage at 52 V. Based on the geometry of the setup, the quantum efficiency of the SiPM was estimated to be 22% at the Xe wavelength of 178 nm. The low excess noise factor, high single photoelectron detection efficiency, and low bias voltage of SiPMs make them attractive alternative UV photon detection devices to photomultiplier tubes (PMTs) for liquid xenon detectors, especially for experiments requiring a very low energy detection threshold, such as neutralino dark matter searches

    Lightside Atmospheric Revitalization System

    Get PDF
    The system was studied as a replacement to the present baseline LiOH system for extended duration shuttle missions. The system consists of three subsystems: a solid amine water desorbed regenerable carbon dioxide removal system, a water vapor electrolysis oxygen generating system, and a Sabatier reactor carbon dioxide reduction system. The system is designed for use on a solar powered shuttle vehicle. The majority of the system's power requirements are utilized on the Sun side of each orbit, when solar power is available

    Gene Flow in Complex Landscapes: Testing Multiple Hypotheses with Causal Modeling.

    Get PDF
    Predicting population-level effects of landscape change depends on identifying factors that influence population connectivity in complex landscapes. However, most putative movement corridors and barriers have not been based on empirical data. In this study, we identify factors that influence connectivity by comparing patterns of genetic similarity among 146 black bears (Ursus americanus), sampled across a 3,000-km2 study area in northern Idaho, with 110 landscape-resistance hypotheses. Genetic similarities were based on the pairwise percentage dissimilarity among all individuals based on nine microsatellite loci (average expected heterozygosityp0.79). Landscape-resistance hypotheses describe a range of potential relationships between movement cost and land cover, slope, elevation, roads, Euclidean distance, and a putative movement barrier. These hypotheses were divided into seven organizational models in which the influences of barriers, distance, and landscape features were statistically separated using partial Mantel tests. Only one of the competing organizational models was fully supported: patterns of genetic structure are primarily related to landscape gradients of land cover and elevation. The alternative landscape models, isolation by barriers and isolation by distance, are not supported. In this black bear population, gene flow is facilitated by contiguous forest cover at middle elevations

    Effect of heifer calving date on longevity and lifetime productivity

    Get PDF
    Longevity and lifetime productivity are important factors in profitability of the beef cow herd. Therefore, a concern for many producers is the productivity and longevity of the individual cow in their herd. The 2007-08 survey from National Animal Health Monitoring System (NAHMS) reported that the largest percentages of cows (33%) are culled because they do not become pregnant during the breeding season. It also reported that 15.6% of all culled cows leave the herd before 5 years of age, and an additional 31.8% leave the herd between 5 and 9 years of age. Research has reported that it takes 5 calves to pay for the development costs and annual maintenance of a replacement heifer (E.M. Mousel, Unpublished data). Therefore, to be sustainable, producers need to manage their herd to reduce the number of cows that are culled at a young age

    Adiabatically coupled systems and fractional monodromy

    Get PDF
    We present a 1-parameter family of systems with fractional monodromy and adiabatic separation of motion. We relate the presence of monodromy to a redistribution of states both in the quantum and semi-quantum spectrum. We show how the fractional monodromy arises from the non diagonal action of the dynamical symmetry of the system and manifests itself as a generic property of an important subclass of adiabatically coupled systems

    Evolutionary Roots of Property Rights; The Natural and Cultural Nature of Human Cooperation

    Get PDF
    Debates about the role of natural and cultural selection in the development of prosocial, antisocial and socially neutral mechanisms and behavior raise questions that touch property rights, cooperation, and conflict. For example, some researchers suggest that cooperation and prosociality evolved by natural selection (Hamilton 1964, Trivers 1971, Axelrod and Hamilton 1981, De Waal 2013, 2014), while others claim that natural selection is insufficient for the evolution of cooperation, which required in addition cultural selection (Sterelny 2013, Bowles and Gintis 2003, Seabright 2013, Norenzayan 2013). Some scholars focus on the complexity and hierarchical nature of the evolution of cooperation as involving different tools associated with lower and the higher levels of competition (Nowak 2006, Okasha 2006); others suggest that humans genetically inherited heuristics that favor prosocial behavior such as generosity, forgiveness or altruistic punishment (Ridley 1996, Bowles and Gintis 2004, Rolls 2005). We argue these mechanisms are not genetically inherited; rather, they are features inherited through cultural selection. To support this view we invoke inclusive fitness theory, which states that individuals tend to maximize their inclusive fitness, rather than maximizing group fitness. We further reject the older notion of natural group selection - as well as more recent versions (West, Mouden, Gardner 2011) – which hold that natural selection favors cooperators within a group (Wynne-Edwards 1962). For Wynne-Edwards, group selection leads to group adaptations; the survival of individuals therefore depends on the survival of the group and a sharing of resources. Individuals who do not cooperate, who are selfish, face extinction due to rapid and over-exploitation of resources
    • …
    corecore