$$
\begin{gathered}
\text { CR } 160897 \\
c .3
\end{gathered}
$$

(NASA-CR-100897) LIGHTSIDE ATMOSPHERIC ..... N®1-207.11
REVITALIZATION SYSTEG Final Study Report,Apr. - 30 sej. 1y8J (Hamiltos Standard.Windsor Lucks, Conio. 160 p HC AUB/mF AU1 UnclasCSCL 06K G3/54 41128STUDY REPORT
LIGATSIDE ATMOSPHERIC REVITALIZATION SYSTEMBY
ARTHUR K. COLLING, ROSS J. CUSHMAN,MARK M. HULTMAN, AND JOHN R. NASON
PREPARED UNDER CONTRACT NO. NAS 9-13624
BY
HAMILTON STANDARD
DIVISION OF UNITED TECHNOLOGIES CORPORATIONWINDSOR LOCKS, CONNECTICUTNATIONAL AERONAUTICS AND SPACE ADMINISTRATIONLYNDON B. JOHNSON SPACE CENTERHOUSTON, TEXAS
OCTOBER, 1980

STUDY REPORTLIGHTSIDE ATMOSPHERIC REVITALIZATION SYSTEMBY
ARTHUR K. COLLING, ROSS J. CUSHMAN,MARK M. HULTMAN, AND JOHN R. NASON
PREPARED UNDER CONTRACT NO. NAS 9-13624
BY
HAMIL'TON STANDARD
DIVISION OF UNITED TECHNOLOGIES CORPORATIONWINDSOR LOCKS, CONNECTICUT
FOR
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LYNDON B. JOHNSON SPACE CENTER houston, texas
OCTOBER, ..... 1980

## ins STRACT

A closed-ioop atmosphere revitalization system was studied as a replacement to the present baseline LiOH system for extended duration shuttle missions. The system consists of three subsystems: a solid amine water desorbed regenerable carbon dioxide removal system, a water vapor electrolysis oxygen generating system, and a Sabatier reaytor carbon dioxide reduction system. The system is called the Lightside Atmospheric Revitalization System (LARS), since it is designed for use on a solar powered shuttle vehicle. The majority of the system's power requirements are utilized on the sun side of each orbit, when solar power is available.

## FOREWORD

This report has been prepared by Hamilton Standard, Division of United Technologies Corporation, for the National Aeronaticis and Space Administration's Lyndon B. Johnson Space Center in accordance with Contract NAS 9-13624, "Breadboard and Flight Prototype $\mathrm{CO}_{2}$ and Humidity Control Systems." The report covers work accomplUshed on the Lightside Atmospheric Revitalization System study phase of the program between April 1, 1980 and September 30, 1980.

Appreciation is expressed to the Technical Monitor, Mr. Frank Collier of the NASA, Johnson Space Center, for his guidance and advice.

This program was conducted under the direction of Mr. Harlan F . Brose, Program Manager, and Mr. Albert M. Boehm and Mr. Arthur K. Colling, Program Engineers, with the assistance of Messrs. Ross J. Cushman, Mark M. Hultman, and John R. Nason, Analysis and Messrs. David L. Faye and Philip F. Heimlich, Design.

## Table of Contents

Title Page No.
SUMMARY ..... 1
INTRODUCTION ..... 17
OBJECTIVES ..... 18
CONCLUSIONS ..... 20
RECOMMENDATIONS ..... 21
DISCUSSION ..... 22
Work Breakdown Structure ..... 23
System Requirements ..... 24
Gystem Description ..... 26
System Performance ..... 29
Cabin Temperature and Humidity Control ..... 29
Cabin Temperature and Humidity Computer Model ..... 57
Cabin $\mathrm{CO}_{2}$ Partial Pressure Profiles ..... 58
Cabin Oxjgen Partial Pressure Control ..... 64
Comparison to Present Shuttle ECS ..... 66
System Fixed Weight Summary ..... 67
PEP Mission (570 Inclination órbit) Trade study ..... 69
Power System Mission (No Additional Water Storage) or Sun Synchronous PEP Mission Trade Studies ..... 72
Power System Trade Study (All Fuel Cells At cold Start) ..... 78
System Effectiveness Studies ..... 83
System Safety ..... 83
System Maintainability ..... 84
Subsystem Sizing and Operating Characteristics ..... 85
SAWD Sizing ..... 85
Parametric Sizing Characteristics ..... 91
Solid Amine Moisture Control and Cyclic Moisture Equilibrium ..... 91
Bed Steaming Requirements ..... 100
SAWD System Operating Characteristics ..... 105
Desorption Cycle Operating Characteristics ..... 111
Selected Approach as Applied to Polar Orbit Mission ..... 114
Conditioning of Solid Amine Prior to Launch and Upon Reentry ..... 114
WVE Sizing ..... 116
Sabatier Subsystem ..... 121
System Integration Studies ..... 126
Major Component Descriptions ..... 126
LARS Instrumentation Requirements ..... 136
Power Distribution to LARS ..... 140

## List of Figures

Figure No. Title Page No.
Figure 1 LARS Schematic ..... 2
Figure $2 \mathrm{CO}_{2}$ Partial Pressure Profile for Two-Bed LARS-- 6 Member Crew ..... 3
Figure 3 WVE 15 Cell Performance ..... 4
Figure 4 LARS Study 6 Member Crew 9 psia Cabin Temperature and Dewpoint ..... 5
Figure 5 Cabin Air flow Chart Nominal Heat Loads f. Member Crew 9 psia ..... 7
Figure 6 Sabatier Flow Chart 6 Menber Crew 9 psia ..... 8
Figure 7 LARS Study Power Profile 6 Member Crew 9 psia ..... 10
Figure 8 SAWD Installation Drawing (Sheet l) ..... 11
Figure 9 SAWD Installation Drawing (Sheet 2) ..... 12
Figure 10 SAWD Installation Drawing (Sheet 3) ..... 13
Fiqure 11 LARS Installation Drawing (Sheet l) ..... 14
Figure 12 LARS Installation Drawing (Sheet 2) ..... 15
Figure 13 LARS Installation Drawing (Sheet 3) ..... 16
Figure 14 LARS Schematic ..... 27
Figure 15 LARS Study 2 Member Crew 9 psia Cabin Temperature and Dewpoint ..... 30
Figure 16 LARS Study 4 Member Crew 9 psia Cabin Temperature and Dewpoint ..... 31
Figure 17 LARS Study 6 Member Crew 9 psia Cabin Temperature and Dewpoint ..... 32
Figure 18 LARS Stūy 2 Member Crew 14.7 psia Cabin Temperature and Dewpoint ..... 33
Figure 19 LARS Study 4 Member Crew 14.7 psia Cabin Temperature and Dewpoint ..... 34
Figure 20 LARS Study 6 Member Crew 14.7 psia Cabin Temperature and Dewpoint ..... 35
Figure 21 LARS Study 6 Member Crew 9 psia Maximum Heat Loads Cabin Temperature and Dewpoint. ..... 36
Figure 22 LARS Study 6 Member Crew 14.7 psia Maximum Heat Loads Cabin Temperature and Dewpoint ..... 37
Figure 23 CO Transient Due to Skipping One Desorb--6 Men ..... 40
Figure 24 Cabin Air Flow Chart Nominal Heat Loads 4 Member Crew 9 psia ..... 41
Figure 25 Sabatier Flow Chart 4 Member Crew 9 psia ..... 42
Figure 26 Cabin Air Flow Chart Nominal Heat Loads 6 Member Crew 9 psia ..... 43
Figure 27 Sabatier Flow Chart 6 Member Crew 9 psia ..... 44
Figure 28 Cabin Air Flow Chart Maximum Heat Loads 6 Member Crew 9 psia ..... 45
Figure 29 Cabin Air Flow Chart Nominal Heat Loads 4 Member Crew 14.7 psia ..... 46
Figure 30 Sabatier Flow Chart 4 Member Crew 14.7 psia ..... 47
Figure 31 Cabin Air Flow Chart Nominal Heat Loads 6 Member Crew 14.7 psia ..... 48
Figure 32 Sabatier Flow Chart 6 Member Crew 14.7 psia ..... 49
Figure 33 Cabin Air Flow Chart Maximum Heat Loads 6 Member Crew 14.7 psia ..... 50


## List of Figures Continued

Figure No. Title Page No.
Figure 68 Solid Amine Bed Pressure Drop ..... 109
Figure 69 IMU Fan Performance Curves ..... 110
Figure 70 Contaminant Control Canister Inlet Temperature ..... 112
Figure 71 Estimated $\mathrm{CO}_{2}$ Flow Rate During Desorption ..... 113
Figure 72 LARS Mass Balance for One Orbit ..... 115
Figure 73 WVE 15 Cell Performance ..... 118
Figure 74 WVE Cell Pair ..... 120
Figure 75 SAWD Installat on Drawing (Sheet 1) ..... 127
Figure 76 SAWD Installation Drawing (Sheet 2 ) ..... 128
Figure 77 SAWD Installation Drawing (Sheet 3) ..... 129
Figure 78 LARS Installation Drawing (Sheet I) ..... 130
Figure 79 LARS Installation Drawing (Sheet 2) ..... 131
Figure 80 LARS Installation Drawing (Sheet 3) ..... 132
Figure 81 Preprototype SAWD Canister ..... 134

## List of Tables

Table No. Title Page No.
Table 1 Trade Study Summary ..... 9
Table 2 LARS Study Requirements/Assumptions ..... 25
Table 3 LARS Performance Summary ..... 39
Table 4
Power System Mission Water Balance (NoAdditional Water Storage)75
Table 5
Power System Mission Water Balance (All FuelCells at Cold Start)79
Table 6
Table 7Table 8Table 9
Table 10
Table 11
Table 12
Table 13
89
SAWD Bed Loading
92
SAWD Subsystem Sizing Summary
123
Sabatier Subsystem Design Specification
Preprototype Sabatier Subsystem PerformanceConversion Efficiency During Steadystate Testing 124Preprototype Sabatier Subsystem Performance Aver-
age Conversion Efficiency During Cyclic Testing 125
LARS Weight Summary ..... 137-138
LARS Instrumentation Requirements ..... 139
LARS Power Summary ..... 14.1

The Lightside Atmospheric Revitalization System (LARS) is an attractive improvement to the Shuttle Orbiter ARS for extended duration missions.

The LARS study was divided into seven parts: system requirements, system description, system performance, comparison to present shuttle ECS, system effectiveness studies, subsystem sizing and operating characteristics, and system integration.

The primary requirement for the LARS is to maintain the atmosphere for a crew of six with either a 62.05 or $101.35 \mathrm{kPa}(9$ or 14.7 psia) cabin pressure. The nominal $\mathrm{CO}_{2}$ level is 5 mmHg , and oxygen partial pressure limits are $17.58 \pm^{2} 1.03 \mathrm{kPa}(2.55+.15$ psia) for a $62.05 \mathrm{kPa}(9 \mathrm{psia})$ cabin pressure and $22.06 \pm \mathrm{I} .72$ $\mathrm{kPa}(3.2 \pm .25 \mathrm{psia})$ for a 101.35 kPa ( 14.7 psia ) cabin pressure. Normal limits for cabin temperature and dewpoint are 18.33 to $26.67^{\circ} \mathrm{C}\left(65-80^{\circ} \mathrm{F}\right)$ and 3.89 to $16.11^{\circ} \mathrm{C}\left(39-61^{\circ} \mathrm{F}\right)$, respectively. The LARS must fit into the volume of the existing $\mathrm{CO}_{2}$ control system and LiOH storage.

The LARS is shown schematicaliy in Figure i. It consists of three subsystems: a solid amine water desorbed (SAWD) regenerable $\mathrm{CO}_{\text {, }}$ removal subsystem, a water vapce electrolysis (WVE) oxygen Generation subsystem, and a Sabatier $\mathrm{CO}_{2}$ reduction subsystem. The system schematic is similar to the initial concept, except the SAWD subsystem has two beds instead of one. The selection of two beds helps to level the cabin temperature and humidity peaks resulting after adsorption is started on a bed. Additionally, reliability is increased with two beds.

The entire LARS is designed for operation in a solar powered shuttle vehicle. Most of its power utilization is during the light side of each orbit. On fuel cell powered vehicles, the WVF and Sabatier subsystems would not generally be used. However, the SAWD subsystem would be used for $\mathrm{CO}_{2}$ control. Since the three subsystems are designed for integration into the shuttle vehicle in phases as field installations, the SAWD subsystem should be installed for all missions and the WVE and Sabatier subsystems can be added later for longer missions that use solar power.

An analysis of the LARS was conducted with particular emphasis on the SAWD and WVE subsystems. The complete analysis, design, and testing of a preprototype Sabatier subsystem has recently been completed by Hamilton Standard under Contract NAS 9-15470. A typical profile of SAND subsystem $\mathrm{CO}_{2}$ performance for a six-man crew is shown in rigure 2. WVE cell performance was predicted, and oxygen production for various cell voltages and inlet dewpoints is shown in Figure 3. Cabin temperature and dewpoint were predicted for an orbiter with the LARS installed. The results for the design case of a six-man crew, nominal heat loads, and a $62.05 \mathrm{kPa}(9$ psia) cabin pressure are given in Figure 4. Additionally, cabin air flow charts and Sabatier flow charts were



FICURE 2
$\mathrm{CO}_{2}$ PARTIAL PRESSURE PROFILE FOR TWO BED LARS SYSTEM


FIGURE 3

WVE 13 CELL PERFORMANCE

[ CABIN TEMPERATURE--DEG F O CABIM DEWPOINT--DEG F

FIGURE 4
LARS SYSTEM STUDY
6 MEMBER CREW 9 PSIA NOMINAL HEAT LOAD CABIN TEMPERATURE AND DEWPOINT
developed to show the temperatures, dewpoints, and heat loads at various points in the system at the cime of the highest cabin dewpoint during an orbit. Sample charts for the six-man, 62.05 kpa ( 9 psia) cabin pressure, nominal heat load case are given in Figures 5 and 6. Performance curves and charts similar to these, but for various crew sizes and cabin conditions, are provided in the discussion section of this report.

A trade study was conducted to compare the LARS to the baseline LiOH system for PEP and power system missions. Since the LARS can be installed aboard the orbiter in increments of the saw subsystem only, the SAWD and WVE subsystems, or the entire LARS, each of these combinations was compared to the baseline LiOH system. For all missions considered the addition of a SAWD subsystem provided significant savings in weighr and volume. The addition of the WVE and Sabatier subsystems does not affect weight or colume requirements significantly, but allows large increases in mission length for PEP missions using a sun synchronous orbit or for power system missions. A summary of the trade study results is given in Table 1.

All of the components of the LARS are designed as line replacement items. No in-flight maintenance is required, except the periouic replacement of the contaminant control canister (approximately every 10 days).

The subsystem sizing and operating characteristics por of the study provided necessary data for the other sections of the study. The requirements for the SAWD subsystem were determined to be two canisters, each containing 5.90 kg ( 13 lbm ) of dry solid amine material. Nominal flow for each canister is . 340 $\mathrm{m}^{3} / \mathrm{min}(12 \mathrm{CFM})$, provided by one IMU fan. An analysis of solid amine drying characteristics has shown that for the various cabin temperature and relative humidity conditions experienced, the SAWD beds maintain moisture stability. Each bed operates on a 72 minute adsorption and 24 minute desorption cycle. The two beds' cycles are offset by approximately 24 minutes to limit peak power requirements by only desorbing one bed at a time.

Based on the WVE cell performance curves of Figure 3, the WVE subsystem was sized at 15 cells. This will supply the cabin leakage and metabolic oxygen for a six-man crew without exceeding 1.90 volts per cell.

Power requirement profiles for an orbit were generated from subsystem performance and operating characteristics. The profile for the six-man crew, 62.05 kPa ( 9.0 psia ) cabin pressure case is shown in Figure 7.

Since installation of the LARS into the shuttle will pocentially be accompljshed in phases, packaging drawings have been prepared for both an installation of the SAWD subsystem alone and for the installation of the entire LARS. The packaging drawings are shown in Figures 8 through l3. The goal of locating the system within the volume presently used for $\mathrm{CO}_{2}$ control and LiOH storage was achieved in both cases.


MOST HUMID CONDITIONS: 56 MIN INTO LIGHT SICE


Table 1
TRADE STUDY SUMMARY

| MISSION <br> W/4 CRYO KITS | BASELINE <br> MISSION LENGTH DAYS | ADVANTAGES FOR <br> ADDITION OF <br> SAWD <br> SUBSYSTEM | ADVANTAGES FOR ADDITION OF WVE \& SABATIER SUBSYSTEMS |
| :---: | :---: | :---: | :---: |
| PEP <br> $57^{\circ}$ INCLINATION <br> FUEL CELL POWER <br> ON DARK SIDE <br> WITH SOLAR CELL PENALTY | 17 | SAVINGS $\begin{aligned} \text { WEIGHT }= & 102.95 \mathrm{KG} \\ \text { VOLUME }= & (227 \mathrm{LBM}) \\ & \left(12.0 \mathrm{M}^{3}\right) \end{aligned}$ | NOT <br> SIGNIFICANT |
| PEP <br> SUN SYNCHRONOUS <br> FUEL CELLS <br> 2 COLD, 1 HOT START <br> WITH SOLAR CELL PENALTY | 57 | SAVINGS $\begin{aligned} & \text { WEIGHT }=699 \mathrm{KG} \\ & \text { VOLUME }=\left(1541 \mathrm{~F}^{\mathrm{F}} \mathrm{HM}\right) \\ &(63 \mathrm{FT}) \end{aligned}$ | INCREASE <br> MISSION LENGTH <br> BY 14 DAYS |
| POWER SYSTEM <br> FUEL CELLS <br> ALL COLD START <br> NO SOLAR CELL PENALTY <br> INCLUDES SUPPLEMENTARY <br> WATER STORAGE | 80 | SAVINGS $\begin{aligned} \text { WEIGHT }= & 1005 \mathrm{KG} \\ \text { VOLUME }= & \left(2217 \mathrm{~L}^{3} \mathrm{BM}\right) \\ & \left(89 \mathrm{MT}^{3}\right) \end{aligned}$ | INCREASE MISSION LENGTH BY 47 DAYS |

Overon of


FIGURE 7
LARS SYSTEM STUDY
POWER PROFILE
6 MEMBER CREW 9 PSIA

SAWD INSTALLATION DRAWING (SHEET 2)



FIGURE 10
SAWD INSTALLATION DRAWIMG (SHEET 3)




FIGURE 13
LARS INSTALLATION DRAWING (SHEET 3)

## INTRODUCTION

An improved atmospheric revitalization system was studied for use on the shuttle for extended duration orbiter missions. The system consists of three subsystems: a solid amine water desorbed (SAWD) CO removal subsystem; a water vapor electrolysis (WVE) oxygen generating subsystem; and a Sabatier $C O$ reduction subsystem. The analysis and preliminary design assumed a sixman metabolic load controlled to a 5.0 mmHg partial pressure of $\mathrm{CO}_{2}$. Baseline cabin pressure was assumed to be $62.05 \mathrm{kPa}(9.0$ psia). However, $101.35 \mathrm{kPa}(14.7 \mathrm{psia})$ cabin pressure cases were also considered.

The system is called the Lightside Atmospheric Revitalization System (LARS). It is designed to utilize the volume on the shuttle vehicle presently used for $\mathrm{CO}_{2}$ control and LiOH storage. Most of the power consumed by the LARS is used on the light side of each orbit, and it can be unregulated solar cell DC power.

The study included the development of computer models to predict the WVE system performance, the CAWD system $\mathrm{CO}_{2}$ performance, and the cabin temperature and humidity with the LARS installed. The program listings are provided in Appendix A.

The system integration portion of the study resulted in package drawings showing the SAWD subsystem individually and the entire LARS installed in the shuttle orbiter.

## OBJECTIVES

The primary objective of the LARS study was to define the integration of the LARS into the shuttle orbiter utiaizing space now occupied by the shuttle ECS and the LiOH storage. The study defines the weight, power, volume, and interface impacts of installing the system and includes trade studies, performance predictions, and installation arrangements.

The study was divided into seven parts:

> System Requirements
> System Description
> System Performance
> Comparison to Present Shuttle ECS
> System Effectiveness Studies
> Subsystem Sizing and Operating Characteristics
> System Integration Studies

The objectives of each part are listed below:

## System Requirements

- List the system requirements

System Description

- Describe the selected system
- Describe the modes of system operation including operation during launch and landing

System Performance

- Describe cabin temperature and humidity control as affected by LARS
- Discuss cabin carbon dioxide control
- Discuss cabin oxygen partial pressure control
- Summarize system F er requirements and profiles

Comparison to Present Shuttle ECS

- Trade-off the LARS against the baseline shuttle LiOH ECS for various projected missions
- PEP/spacelab mission
- Euwer system mission

System Effectiveness Studies

- Evaluate system safety
- Discuss system maintainability

Subsystem Sizing and Operating Characteristics

- Discuss the SAWD subsystem sizing the operating characteristics
- Discuss the WVE system sizing and operating characteristics
- Describe the sabatier system and its operating characteristics

System Integration Studies

- Describe the installation of LARS into the shuttle vehicle
- Describe major subsystem components and give a weight summary
- Describe the power distribution to the LARS
- Discuss instrumentation requirements


## CONCLUSIJNS

1. A 15 cell water vapor electrolysis subsystem, weighing 47.20 kg ( 104 lbm ) and installing within tho present ECS volume, provides metabolic and cabin leakage oxygen requirements with a crew of six.
2. A two-bed solid amine subsystem was sized at 5.90 kg (13 lbm) of dry solid amine per bed. The entire SAWD subsystem weighs $59.8 \mathrm{~kg}(131.8 \mathrm{lbm})$ and installs within the present ECS volume.
3. With a LARS installed, shuttle cabin temperature and humidity are within specifications for all nominal heat lad cases.
4. For the two-hour maximum heat load sondition with a six-man crew and a $62.05 \mathrm{kPa}(9 \mathrm{psia})$ cabin pressure, both LARS and baseline LiOH equipped shuttle vehicles exceed the maximum cabin temperature.
5. The solid amine subsystem maintains cabin $\mathrm{CO}_{2}$ partial pressure below 5 mmHg for a six-man crew.
6. The solid amine subsystem can maintain spacelab $\mathrm{CO}_{2}$ partial pressure less than 5.4 mmHg without using LiOH in the spacelab.
7. The LARS offers significant weight, volume and mission length advantages over the baseline LiOH system for extended. shuttle missions. The SAWD subsystem or the complete LARS can be installed as field installations.
8. The LARS is designed for easy maintenance by use of line replacement components.
9. The LARS operating characteristics are compatible with projected shuttle mission scenarios.
10. The LARS can be installed within the envelope presently used for $\mathrm{CO}_{2}$ control and LiOH storage.
11. Drawings have been developed showing the installations of the solid amine subsystem only and of the entire LARS.
12. The LARS power requirements can be supplied by the present shuttle vehicle electrical distribution system.

## RECOMMENDATIONS

1. The testing under the LARS program should be undertaken.
2. The shuttle ARS heat exchanger should be tested with a full sized solid amine subsystem to determine its compatibility under all cabin conditions.
3. The Sabatier subsystem should be tested with the other two subsystems.
4. The LAFis can be installed aboard the orbiter in phases. The SAWD subsystem should be installed on all orbiters. However, its major benefits will be realized on extended mission duration orbiters. Addition of the WVE and Sabatier subsystems is beneficial for sun synchrono:s orbit PEP missions or for power system missions.

## DISCUSSION

The Lightside Atmospheric Revitalization System study was divided into seven major tonics. The detailed presentation in this section is divided into subsections corresponding to these topics.

No.

I
II
III
IV
v
VI
VII

Topic

System Requirements
System Description
System Performance
Comparison to Present Shuttle ECS
System Effectiveness Studies
Subsystem Sizing and Operating Characteristics
System Integration Stuadies

TOPIC I<br>System Requirements

The Lightside Atmospheric Revitalization System study is based on the requirements and assumptions given in Table 2.

| 1 Crewsize |  | $\begin{aligned} & 6 \text { men } \\ & 1.76 \mathrm{lbm} / \mathrm{man} \text { day } \end{aligned}$ |
| :---: | :---: | :---: |
| 2 Metabolic $\mathrm{O}_{2}$ | $0.798 \mathrm{~kg} / \mathrm{man}$ day | $1.761 \mathrm{tm} / \mathrm{man}$ day |
| $3 \mathrm{O}_{2}$ Partial pressure | $27.58 \pm 1.03$ or $22.06 \pm 1.72 \mathrm{kPa}$ | $2.55+.15$ or $3.2+.25 \mathrm{psia}$ |
| 4 cabin pressura | $62.05 \pm 1.38$ or $101.35 \pm 1.38 \mathrm{kPa}$ | $9 \pm .2$ psia or $14.7 \pm .2$ pria |
| 5 Leakage $\mathrm{O}_{2}$ | 0.871 kg/day | $1.921 \mathrm{~mm} / \mathrm{day}$ |
| 6 Launch \& feentry $\mathrm{O}_{2}$ | 38.10 kg | $841 \mathrm{lmm}(20 \mathrm{kw}, 6$ men, 5 hr ) |
| 7 Reentry hold $\mathrm{O}_{2}{ }^{2}$ | 58.97 kg | $130 \mathrm{lbm}(6 \mathrm{men}, 20 \mathrm{hr}, 7.35 \mathrm{kw}$ ) |
| 8 EVA $\mathrm{O}_{2}$ | 0.590 kg | $1.3 \mathrm{lmm}(7 \mathrm{hrs})(354.26 \mathrm{~kg} 781 \mathrm{lba}$ total) |
| 9 Kit tark $\mathrm{O}_{2}$ | 321.15 kg kr | 708 lbm usable, ( 354.26 kg 781 lbm total) |
| 10 Fuel cell ${ }^{\text {a }}$ consumption | $0.367 \mathrm{~kg} / \mathrm{kw} \mathrm{hr}$ |  |
| 11 Launch \& reentry ${ }^{1} 2$ | 4.58 kg |  |
| 12 Fuel Cell $\mathrm{H}_{2}$ consumption | $0.0454 \mathrm{~kg} / \mathrm{kw} \mathrm{hr}$ 37.42 kg | 8.8 .51 lba (usable) |
| 14 Metabolic ${ }^{\text {co }}$ | $0.957 \mathrm{~kg} / \mathrm{man}$ day | $2.11 \mathrm{lbm} / \mathrm{man}$ day |
| $15 \mathrm{CO}_{2}$ partial pressure average |  | $5 \mathrm{mutg}(7.6 \mathrm{mmitg} \mathrm{max})$ |
| 16 LiOH per cartridge | 2.27 kg | 5.01 lma ( 0.113 kg . 25 lbm charcoal) |
| 17 LLOH cartridge weight | 0.907 kg | 2.0 lmm (less Lioh charcoal) |
| 18 LiCt rack weight | $3.63 \mathrm{~kg}_{3}$ | 8.0 lbri ( 3 cartridges) |
| 19 Lioll rack volume | $0.0311 \mathrm{~m}^{3}$ | 1.1 ft (3 cartridges) |
| 20 LiOH storage existing capability |  | 27 cartridges |
| 21 LiOH change out - 4 Men |  | 12 hr /cartridge |
| 22 Lioh change out - 6 Men |  | $7.6 \mathrm{hr} /$ cartridge |
| $23 \mathrm{LiOH} \mathrm{H}_{2} \mathrm{O}$ production | $0.390 \mathrm{~kg} / \mathrm{man}$ day | $0.861 \mathrm{~lm} / \mathrm{man}$ day |
| 24 Food \& ${ }^{2}$ drink $\mathrm{H}_{2} \mathrm{O}$ | $2.59 \mathrm{~kg} / \mathrm{man}$ day | $5.71 \mathrm{lbr} / \mathrm{man}$ day |
| 25 Wash $\mathrm{H}_{2} \mathrm{O}$ | $1.16 \mathrm{~kg} / \mathrm{man}$ day | $2.55 \mathrm{lmm} / \mathrm{man}$ day |
| 26 EVA $\mathrm{H}_{2} \mathrm{O}$ | 4.35 kg | $9.6 \mathrm{lbm}(7 \mathrm{hr})$ |
| 27 Condehsate $\mathrm{H}_{2} \mathrm{O}$ (metabolic only, $70^{\circ} \mathrm{F}$ cabin) | $1.58 \mathrm{~kg} / \mathrm{man}$ day | $3.49 \mathrm{lbm} / \mathrm{man}$ day |
| 28 Urine $\mathrm{H}_{2} \mathrm{O}{ }^{2}$ | $1.50 \mathrm{~kg} / \mathrm{man}$ day | $3.3 \mathrm{lbm} / \mathrm{rian}$ day |
| 29 Fuel cell $\mathrm{H}_{2} \mathrm{O} / \mathrm{kw} \mathrm{hr}$ | 0.413 kg | 0.91 lbm |
| 30 Reentry \& Contingency $\mathrm{H}_{2} \mathrm{O}$ | 149.69 kg | 330 lmm (usable, 2 out of 3 tanks) |
| 31 Water/waste tank capacity | 74.64 kg | 16 E 1 mm (usable) |
| 32 Water/waste tank weight | 20.87 kg | 46 lmm (includes structure) |
| 33 rotable water tanks baselins |  | 3 3 |
| 34 Wastewater tanks baseline |  | 2 |
| 35 Reentry hold contingency |  | 20 hr |
| 36 puel cell hot start idle |  | 3 kw (3 cells) |
| 37 Fuel cell cold start idle |  | 1 kw (3 cells) |
| 38 Cryo kit weight $\mathrm{O}_{2}$ \& $\mathrm{H}_{2}$ | 318.88 kg | 703 lb (no usable $\mathrm{O}_{2}$ or $\mathrm{H}_{2}$ ) |
| 39 Charcoal requirement ${ }^{2}$ | $0.0567 \mathrm{~kg} / \mathrm{m}$ an day | $0.125 \mathrm{lb} /$ /man day ${ }^{\text {coser }}$ |
| 40 Metabolic sensible heat load average | $3.408 \times 10_{5}^{5}$ Joules/man hr | $323 \mathrm{Btu} / \mathrm{man} \mathrm{hr} \mathrm{( } 700^{\circ} \mathrm{F}$ cabin) |
| 11 Metaholic Latent Load Average | $1.308 \times 10^{5}$ Jcules/man hr | $124 \mathrm{Btu} /$ man hr ( $70^{\circ} \mathrm{F}$ cabin) |
| 42 Cabin electrical and wall load average | $1.974 \times 10_{6}^{6}$ Joules/hr | 1871 Btu/hr |
| 43 Avionics load average | $4.593 \times 10^{6}$ Joules/ hr | 4353 Btu/hr |
| 44 Cooling water outlet temp, from interface fx | $4.61{ }^{\circ} \mathrm{C}$ | $40.3{ }^{\circ} \mathrm{F}$ |
| 45 cooling water flow | $272.16 \mathrm{~kg} / \mathrm{mr}$ | $600 \mathrm{lbm} / \mathrm{hr}$ |
| 46 Cabin termerature range | $18.33-26.67{ }^{\circ} \mathrm{C}$ | ${ }_{70} 6508{ }^{\circ} \mathrm{F}$ |
| 47 Cabin temperature average | $21.11{ }^{\circ} \mathrm{C}$ | ${ }^{70}{ }^{\circ} \mathrm{F}$ |
| 48 Cabin dewpoint range | $3.89-16.11^{\circ} \mathrm{C}$ | 39-61 ${ }^{\circ} \mathrm{F}$ |
| 49 Cabin dewpoint average | $10^{\circ} \mathrm{C}$ | $50^{\circ} \mathrm{F}$ |
| 50 power-minimum shuttle services |  | 14 kw |
| 51 Flash evaporator topping duct power |  | 170 watts average |
| 52 Solar cell penalty | $56.25 \mathrm{~kg} / \mathrm{kw}$ | $1241 \mathrm{br} / \mathrm{KW}$ |
| 53 Cabin repressure from $62.05 \mathrm{kPa} / 90 \mathrm{psia}$ ) to 101.35 kPa ( 14.7 psia ) |  | part of contingency |
| 54 Air lock manned | $3.68 \mathrm{~m}^{3}$ | $130 \mathrm{ft}^{3}$ |

## TOPIC II <br> System Description

The Lightside Atmospheric Revitalization System (LARS) is designed for extended duration orbiter missions, during which the fuel cells are idled and solar power is utilized. This system is well suited to these conditions, since with the fuel cells idled, water can become the limiting consumable. The LARS includes a regenerable subsystem for carbon dioxide control and an oxygen generating subsystem capable of supplying oxygen for metabolic usage and cabin leakage makeup. Additionally, hydrogen from the oxygen generating subsystem and carbon dioxide are processed in a Sabatier reactor to produce potable water for crew use and methane, which is vented overboard.

The LARS, as it would be integrated into the shuttle orbiter ECS, is shown schematically in Figure 14. The LARS consists of three subsystems; the SAWD, solid amine water desorbed $\mathrm{CO}_{2}$ removal subsistem; the wVE, water vapor electrolysis subsfstem; and the Sabatier $\mathrm{CO}_{2}$ reduction subsystem. The system is designed to draw the majority of its electrical power requirement during the sun side of each orbit. During the $\mathrm{CO}_{2}$ adsorption cycle, cabin air enters the amine canisters through one of two shuttle IMU fans and exits through an activated charcoal contaminant control sartridge intc the main cabin return airstream. The combined main cabin air and SAWD discharge air flow through a shuttle cabin fan into the water vapor electrolysis cells and exit into the shuttle condensing heat exchanger or bypass line, depending on the cabin air temperature requirements. The water vapor electrolysis cells absorb water from the air stream and produce oxygen and hydrogen. The oxygen is discharged directly into the cabin air stream for metabolic use or to account for cabin leakage. The hydrogen is mixed with a regulated flow of carbon dioxide, and the gas mixture is fed into the Sabatier reactor, where water and methane are produced. The water is condensed and pumped to the shuttle water storage tanks. The methane gas and any excess carbon dioxide are vented overboard. The SAWD beds are steam desorbed one at a time, and the WVE system and Sabatier reactor are operated only on the sun side of an orbit. Fan flow is continued through the WVE, SAWD canisters, and contaminant control canister on the dark side of the orbit.

Carbon dioxide is desorbed from the solid amine by heating the bed with steam. Water drawn from the SAWD water accumulator is pumped over the carbon dioxide compressor, adsorbing the heat of compression, and into the steam generator for the bed to be desorbed. Water vapor from the steam generator enters the amine bed and neats the solid amine material. While the bed is being heated, residual air is driven out and returned to the cabin via a solenoid operated ullage valve. Once carbon dioxide starts
LUWAHOS SYZT
DT a甘nפIa

$O_{2} \longrightarrow " A$

being driven from the bed, the ullage valve shuts and the carbon dioxide is directed to a compressor. The compressor sends the carbon dioxide to an accumulator for later reduction in the Sabatier reactor. Excess carbon dioxide can be dumped overboard either directly from the bed or through a relief val.ve from the accumulator. A detailed discussion of solid amine steam desorption is given in the Subsystem Sizing and Operating Characteristics section of this report.

The operation of the entire LARS, as descrited above, is applicable to a mission utilizing solar power. For a mission using fuel cell fower, excess water is available, and the WVE and Sabatier sibsystems would not be used. The operation of the SAWD subsystem for carbon dioxide removal would be similar to that described previously. However, the carbon dioxide would be dumped directly overboard during desorption. Also, the SAWD subsystem cycle timing would not be fixed by orbit considerations, allowing more flexibility in system operation. For example, allowing more time between the desorption of the two amine canisters would moderate the cabin humidity increase, when adsorption is started on a canister. Additionally, desorption time can be increased, reducing peak power requirements.

Since the WVE and Sabatier subsystems are designed for use with solar power, they are not used during launch or reentry. The SAWD subsystem is designed to be operated during launch and reentry, if necessary. However, if before launch the cabin air is initially free of $\mathrm{CO}_{2}$, the combination of the cabin capacitance and the first 72 minute ${ }^{2}$ adsorption period for the amine canisters provides four hours before steam desorption is necessary. Therefore, the only power requirements of the SDWD subsystem during this time are one IMU fan and the controller. A LiOH cartridge can be installed in the contaminant control canister, if additional $\mathrm{CO}_{2}$ control is required before the SAWD canistiers are desorbed. If ${ }^{2}$ power is critical during reentry, SAWD steam desorption can be stopped, and LiOH can be used as necessary.

TOPIC III
System Performance
Cabin Temperature and Humidity Control
The effects of operating the LARS on cabin humidity and temperature during the various stages of an orbit have been studied for the following conditions:

1) $2,4,6^{*}$ member crew, $62,05 \mathrm{kPa}(9.0 \mathrm{psia})$ total pressure;
2) 2,4,6 member crew, $101.35 \mathrm{kPa}(14.7 \mathrm{psia})$ total pressure.

As seen in Figures 15 through 20, the most humid condition occurs at approximately fifty-six minutes into light side operation. Here, the first SAWD bed to be desorbed has been returned to adsorption for twenty-six minutes, and the second bed has only heen on adsorption for two minutes. The peak latent heat load of the moist air leaving the SAWD bed immediately after the start of adsorption cannot be removed completely by the main condenser, causing cabiñ temperature and dewpoint to rise. A smaller peak can be noted at approximately thirty-one minutes into the light side, when the only SAWD moisture contribution is from the first bed, which has just returned to adsorption. The second bed, at this time, has already begun its desorption, and is isolated from air flow.

The predicted cabin temperatures and dewpoints with the LARS installed are within the desired limits for all crew size and cabin pressure cases with nominal heat loads. The maximum heat load condition experienced during a post sleeping/eating period was also analyzed. Figures 21 and 22 show the temperatures and dewpoints for this condition with a crew of six and $62.05 \mathrm{kPa}(9.0$ psia) and $101.35 \mathrm{kPa}(14.7 \mathrm{psia}) \mathrm{cabin}$ pressures, respectively. These predictions are based on main condenser performance which has been extrapolated from test data for the high latent heat loads seen for a short time after a SAWD bed desorption. A thorough test program is necessary to predict condenser performances under these short duration high latent heat load conditions. During this program any potential problems, such as flow passage plugging due to condensate build-up, can be identified and corrected. The same maximum heat load cases were analyzed for the baseline LiJH system, and the results are also shown on Figures 21 and 22. The temperature and dewpoint values are near or above the desired limits with either system. However, these are steady state analyses for both systems. Since the high heat load case is only a two hour condition, these steady state values of temperature and dewpoint may not be reached or may be reached only at the end of the period. A detailed transient analysis including cabin and ARS thermal masses is required to accurately predict the temperatures and dewpoints during this high heat load case.

[^0]
-CABIN TEMPERATURE OCABIN DEWPOINT

FIGURE 15
LARS SYSTEM STUDY
2 MEMBER CREW 9 PSIA NOMINAL HEAT LOAD
CABIN TEMPERATURE AND DEWPOINT


- CABIN TEMPERATURE--DEG $F$ O CABIN DEWPOINT--DEG F

FIGURE 16

LARS SYSTEM STUDY
4 MEMBER CREW 9 PSIA
NOMINAL HEAT LOAD
CABIN TEMPERATURE AND DEWPOINT


- CABIN TEMPERATURE-MEG F O CABIN DEWPOINT--DEG F

FIGURE 17
LARS SYSTEM STUDY
6 MEMBER CREW 9 PSIA NOMINAL HEAT LOAD
CABIN TEMPERATURE AND DEWPOINT


- CABIN TEMPERATURE--DEG F

O CABIN DEWPOINT--DEG F

FIGURE 18
LARS SYSTEM STUDY
2 MEMBER CREW 14.7 PSIA
NOMINAL HEAT LOAD
CABIN TEMPERATURE AND DEWPOINT


CABIN TEMPERATURE--DEG F O CABIN DEWPOINT--DEG F

FIGURE 19
LAR: SYSTEM STUDY
4 MEMBER CREW 14.7 PSIA
NOMINAL HEAT LOAD
CABIN TEMPERATURE AND DEWPOINT

$\square$ CABIN TEMPERATURE--DEG F
O CABIN DEWPOINT--DEG F

FIGURE 20
LARS SYSTEM STUDY
6 MEMBER CREW 14.7 PSIA
NOMINAL HEAT LOAD
CABIN TEMPERATURE AND DEWPOINT


FIGURE 21

LARS SYSTEM STUDY 6 MEMBER CREW 9 PSIA MAX HEAT LOADS

CABIN TEMPERATURE AND DEWPOINT


FIGURE 22

LARS SYSTEM STUDY
6 MEMBER CREW 14.7 PSIA
MAX HEAT LOADS
CABIN TEMPERATURE AND DEWPOINT

For the LARS, steps can be taken to reduce both temperature and dewpoint during this two-hour maximum heat load condition. The peak values can be reduced by gradually reintroducing flow to the SAWD canisters after steam desorption and by stopping all condenser bypass flow during the first few minutes of adsorption. This limits the rate of moisture entering the air stream, and allows the condensing heat exchanger to more effectively remove the moisture. Also, the SAWD canister steam desorption can be stopped for one cycle during the two-hour maximum heat load condition. Even the steady state analysis shows that this maintains cabin temperature and dewpoint within or near the specifications for the 62.05 kPa ( 9 psia ), six-man case with maximum heat loads. The effect of skipping one dessrption on SAWD subsystem $\mathrm{CO}_{2}$ performance is shown in Figure 23. $\mathrm{CO}_{2}$ partial pressure slightly exceeds 5 mmHg during the transfent, but returns to normal within two cycles. Thus, even for the worst case conditions the LARS is equally or more compatible with the shuttle vehicle than the baseline LiOH system.

The six-man, $101.35 \mathrm{kPa}(14.7 \mathrm{psia})$; nominal heat load case was re-analyzed assuming that fuli adsorption air flow was re-introduced to the SAWD beds gradually over a period of five minutes, rather than almost instantaneously. Results show that maximum cabin dewpoint is reduced from $15.39^{\circ} \mathrm{C}\left(59.7^{\circ} \mathrm{F}\right)$ to $14.61^{\circ} \mathrm{C}$ $\left(58.3^{\circ} \mathrm{F}\right)$, and maximum cabin temperature is reduced from $22.5^{\circ} \mathrm{C}$ $\left(72.5^{\circ} \mathrm{F}\right)$ to $21.5^{\circ} \mathrm{C}\left(70.7^{\circ} \mathrm{F}\right)$. The improvement is due to the reduction in the rate of latent heat load coming from the SAWD beds and the condenser's ability to handle this reduced rate.

Table 3 shows the maximum cabin temperature and humidity during an orbit as well as WVE voltage and WVE and SAWD system power requirements.

Figures 24 through 33 sho the LARS transient responses for cases of varying crew size, cabin pressure, and heat loads. They contain system temperatures, dew points, and heat loads at the time of the most humid cabin conditions during an orbit.

Figures 34 through 39 show the power requirements for the LARS with 2, 4 , and 6 crew members and 62.05 or 101.35 kPa (9 or 14.7 psia) cabin pressure, for a ninety-six minute orbit having thirty-eight minute dark side and fifty-eight minute light side operation. Included in WVE and SAWD power requirements is an additional los necescary for controller operations. Part of the power requirement for the $\mathrm{CO}_{2}$ compressor appears as a net reduction in SAWD power requirements, since compressor waste heat is used to preheat the water entering the SAWD steam generator.

Table 3
LARS PERFORMANCE SUMMARY

| Case <br> No. | \# of Crew | Cabin <br> Pressure <br> kPa (psia) | Max. Cabin <br> riemp. ${ }^{\circ} \mathrm{C}$ ( ${ }^{\circ} \mathrm{F}$ ) | Max. Cabin Dew Point ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$ | Max. WVE <br> Voltage (volts) (Total/Cell) | WVE Power* Required (kw/cycle) | Water From SAWD kg (lbm) | SAWD* <br> Heater Power <br> Required <br> (kw/cycle) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I | 2 | 62.05 (9.0) | 21.89 (71.4) | 12.44 (54.4) | 24.81/1.654 | . 97 | 1.29 (2.84) | . 96 |
| II | 4 | 62.05 (9.6) | 22.44 (72.4) | 13.39 (56.1) | 25.89/1.725 | 1.74 | 1.27 (2.91) | . 95 |
| III | 6 | 62.05 (9.0) | 23.22 (73.8) | 14.22 (57.6) | 26.88/1.792 | 2.56 | 1.27 (2.79) | . 94 |
| IV | 2 | 101.35 (14.7) | 22.06 (71.7) | 13.78 (56.8) | 24.72/1.648 | 1.02 | 1.43 (3.16) | 1.08 |
| V | 4 | 101.35 (14.7) | 22.28 (72.1) | 14.56 (58.2) | 25.71/1.714 | 1.78 | 1.42 (3.13) | 1.07 |
| VI | 6 | 101.35 (14.7) | 22.5 (72.5) | 15.39 (59.7) | 26.52/1.768 | 2.57 | 1.41 (3.11) | 1.07 |

* Does not include controller power.


FIGURE 23
$\mathrm{PCO}_{2}$ TRANSIENT DUE TO SKIPPING ONE DESORB - 6 MEN

most numid conditions 56 min into light side


> CABIN
> $\overline{o_{\text {BLICC }}=1871}$
> $\stackrel{+}{\text { WAL. }}$
> $O_{\text {MET }_{\text {I }}}=1248$
> $\rho_{\text {MFTT }_{S}}=1950$
mosir humid cowntions： 56 min inro hitit：Gilie．


|  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |




SABATIER FLOW CHART
MEMBER CREW 14.7 PSIA



$\frac{C A B I N}{Q_{\text {ELEC }}=5800}$
ELEC
+
WALL
$\mathrm{O}_{\text {HET }_{\mathrm{L}}}=2598$
$\rho_{\text {MET }_{S}}=1302$
nimithooms.


FIGURE 34
LARS SYSTEM STUDY
POWER PROFILE
2 MEMBER CREW 9 PSIA
yathonome.


FIGURE 35
LARS SYSTEM STUDY
POWER PROFILE
4 MEMBER CREW 9 PSIA


FIGURE 36

LARS SYSTEM STUDY
POWER PROFILE
6 MEMBER CREW 9 PSIA

Yistimeors.


FIGURE 37
LARS SYSTEM STUDY
POWER PROFILE
2 MEMBER CREW 14.7 PSIA


FIGURE 38
LARS SYSTEM STUDY
POWER PROFILE
4 MEMBER CREW 14.7 PSIA


FIGURE 39

LARS SYSTEM STUDY
POWER PROFILE
6 MEMBER CREW 14.7 PSIA

For polar orbit operation, since SAWD bed desorption times can be doubled, SAWD peak power requirements would be reduced by 50\%. WVE peak power requirements would be reduced by $47.5 \%$, since operation would be continuous rather than fifty-three out of ninety-six minutes.

## Cabin Temperature and Humidity Computer Model

The computer model used in the cabin temperature and humidity control study incorporates the functioning of the condenser, condenser bypass valve, water vapor electrolysis module and accounts for the temperature and humidity of the air leaving the solid amine water desorbed (SAWD) $\mathrm{CO}_{2}$ removal subsystem. A listing of the computer program is given in Appendix A.

The program initializes at the beginning of the light side of the orbit. The condenser is removing heat and moisture transferred into the cabin from equipment (electrical, avionics, fans) as well as metabolic sensible and latent heat. Water is also being removed from the circulating air stream by absorption into the electrolysis cells. At five minutes into the transient, the WVE subsystem is started and one of the SAWD beds begins steam desorption. Complete desorption of the bed requires approximately twenty-four minutes. After desorption, full bed air flow is re-introduced, and the second SAWD bed begins its desorption cycle. At fifty-three minutes from the beginning of light side operation, the second bed is finished desorbing, and its air flow is restarted. After fifty-eight minutes of light side operation, the WVE is deactivated. It continues replenishing its stored water supply by taking moisture from the cabin air stream, which is receiving water vapor from the second SAWD bed, just returning to adsorption.

Most of the additional sensible and latent heat loads of the LARS system are removed by the main condenser. The condenser bypass control senses a temperature rise in the mixed condenser and bypass flow stream and begins cloving the bypass valve. The rate of closing/opening is proportional to the deviation from the set point temperature, the maximum rate being . $714 \%$ of full valve range per second for a deviation of $\pm 2.5$ degrees or more.

The following information is plotted and/or printed versus time into orbit:

1) Cabin Temperature ( ${ }^{\circ} \mathrm{F}$ )
2) Cabin Dew Point ( ${ }^{\circ} \mathrm{F}$ )
3) Cabin Fan Inlet Temperature ( ${ }^{\circ} \mathrm{F}$ )
4) Cabin Fan Outlet Temperature ( ${ }^{\circ} \mathrm{F}$ )
5) Condenser Air Inlet Temperature ( ${ }^{\circ} \mathrm{F}$ )
6) Condenser Air Outlet Temperature ( ${ }^{\circ} \mathrm{F}$ )
7) Cabin Inlet Temperature ( ${ }^{\circ} \mathrm{F}$ )
8) Condenser Inlet Dew Point ( ${ }^{\circ} \mathrm{F}$ )
9) Condenser Heat Loads (Total, Sensible, Latent) (BTU/HR)
10) Cabin Fan Air Flow Rate (LBM/HR)
11) Condenser Air Flow Rate (LBM/HR)
12) Condenser Coolant Inlet Temperature ( ${ }^{\circ} \mathrm{F}$ )
13) Condenser Coolant Outlet Temperature ( ${ }^{\circ} \mathrm{F}$ )
14) Condensate Flow (LBM/HR)
15) Cabin Aix: Weight Flow (LBM/HR)
16) Condenser Air Weight Flow (LBM/HR)
17) Condens-r Bypass Air Weight Flow (LBM/HR)
18) Sensible Metabolic Load (BTU/HR)
19) Latent Metabolic Load (BTU/HR,
20) Condenser UA (BTU/HR/ ${ }^{\circ} \mathrm{F}$ )
21) Total Water from SAWD Beds (LBM)
22) Required WVE Cell Voltage (VOLTS)

The amount of water entering the SAWD air flow stream has been determined by extensive testing and data analysis to be proportional to the difference between the vapor partial pressure in the incoming air stream and the partial pressure of the stream, assuming it is saturated at the SAWD bed temperature.

## Cabin $\mathrm{CO}_{2}$ Partial Pressure Profiles

SAWD testing was performed at an adsorption cycle time of 52 minutes and an average $\mathrm{CO}_{2}$ partial pressure of $0.4 \%$ by volume or 3.0 mmHg . The baseline case for LARS is $0.67 \%$ by volume or 5.0 mmHg average, and therefore, extrapolation of the experimental data was required.
$\mathrm{CO}_{2}$ performance was assumed to follow that of a typical SAWD test, which shows stable bed moisture conditions and $\mathrm{CO}_{2}$ removal performance. The breakthrough curve for this run is shown in Figure 40 , and the adsorption performance has been extended to an adsorption time of 72 minutes. The curve of removal efficiency versus adsorption time, shown in Figure 4l, was also extended to 72 minutes.

The two bed SAWD subsystem has three phases of operation. The first phase begins with the steam desorption of one of the beds, while the other bed continues the final 24 minutes of its adsorption. After the 24 minute desorption of the first bed, it is returned to adsorption, and the second bed starts its steam desorption. The freshly desorbed bed is now adsorbing $\mathrm{CO}_{2}$ at peak efficiency. When the second bed completes its 24 minute desorption, it is returned to adsorption, and both beds are adsorbing simultaneously for the next 48 minutes. With these three cycle phases, transient cabin carbon dioxide partial pressure profiles for crews of 2,4 , and 6 men are shown in Figures 42, 43, and 44.


FIGURE 40
TYPICAL SAWD TEST BREAKTHROUGH CURVE


FIGURE 41

$$
\mathrm{CO}_{2} \text { REMOVAL EFFICIENCY VS. TIME }
$$



FIGURE 42
$\mathrm{CO}_{2}$ PARTIAL PRESSURE PROFILE FOR TWO BED LARS SYSTEM


FIGURE 43 $\mathrm{CO}_{2}$ PARTIAL PRESSURE PROFYLE FOR TWO BED LARS 5. STEM


FIGURE 44

## $\mathrm{CO}_{2}$ PARTIAL PRESSURE PROFILE FOR TWO BED LARS SYSTEM

Examining Figure 42, there is a point in each cycle where the slope increases suddenly after reaching the minimum $\mathrm{CO}_{2}$ partial pressure. This marks the beginning of the $\mathrm{CO}_{2}$ performance model cycle. At this minimum point, one of the beds begins desorption. With the other bed nearing the end of its adsorption cycle, removal efficiency is low, and the crew $\mathrm{CO}_{2}$ input rate is greater than the removal rate, resulting in the rapid rise of $\mathrm{CO}_{2}$ partial pressure. After the 24 minute desorption, the second bed begins desorption, and the rapid rise in $\mathrm{CO}_{2}$ partial pressure is stopped as the fresh bed returns to service. ${ }^{2}$ With completion of desorption of the second bed, both beds adsorb together for 48 minutes, resulting in a smooth decrease in cabin $\mathrm{CO}_{2}$ partial pressure until the start of the next desorption phase.

The baseline case will maintain average cabin $\mathrm{CO}_{2}$ partial pressure below 4.7 mmHg . The two man and four man cases maintain average $\mathrm{CO}_{2}$ partial pressure below 1.6 mmHg and below 3.3 mmHg , respectively. During an emergency rescue situation, there may be a ten-man crew. Analysis indicates that the baseline system does not malntain acceptable $\mathrm{CO}_{2}$ partial pressures for the tenman case using the operating cycle described above. For the tenman case $\mathrm{CO}_{2}$ partial pressure rises until the bed capacity becomes high enough to accommodate the 10 man production rate. This happens, because solid amine loading is significantly increased for higher inlet $\mathrm{CO}_{2}$ partial pressures. At the 10 man rate, the bed capacity must be $054 \mathrm{~kg} \mathrm{CO} / \mathrm{kg}$ (lbm CO$/ \mathrm{lbm}$ ) dry solid amine. Available data indicates that the required capacity is not realized until the cabin $\mathrm{CO}_{\text {a }}$ partial pressure has exceeded 15 mmHg , and therefore LiOH is reqdired to supplement the SAWD for the 10 man case. However, if flow is increased and cycle time is decreased, the SAWD system can maintain acceptable $\mathrm{CO}_{2}$ levels for the 10 man case. These changes can be easily accoftmodated by the SAWD subsystem if power is available.

The effect of installing a SAWD subsystem in the orbiter on spacelab $\mathrm{CO}_{2}$ control was investigated. With a crew of six, average $\mathrm{CO}_{2}$ partial pressure in the orbiter is maintained below 4.7 mmHg . If three of the crew members arg in the spacelab and there is a constant air exchange of $1.36 \mathrm{~m} / \mathrm{min}$. ( 48 CFM ) between the orbiter and spacelab, the $\mathrm{CO}_{2}$ partial pressure in the spacelab does not exceed 5.4 mmHg . This analysis assumes no LiOH is used in the spacelab.

## Cabin Oxygen Partial Pressure Control

The water vapor electrolysis system oxygen production ia controlled by regulating the current flow through the cells. The WVE controller requires a cabin oxygen partial pressure measurement from the vehicle. At the beginning of light side operation this measurement is compared with a stored measurement taken at the beginning of the previous WVE operating cycle. The current is then lowered or raised by a predetermined percentage from the previous cycle, based on the difference in measurements, and oxygen partial pressure is maintained within the desired range.

The lower limit on the existing cabin pressure and atmosphere composition control is set at oxygen partial pressures of 22.06 $\pm 1.72 \mathrm{kPa}(3.2 \pm .25 \mathrm{psia})$ and $17.58 \pm 1.03 \mathrm{kPa}(2.55 \pm .15 \mathrm{psia})$ For total pressures of 101.35 and 62.05 kPa (14.7 and 9.0 psia), respectively. With the addition of the WVE system, these limits for the existing oxygen partial pressure control would be lowered so that no cryogenic oxygen is introduced to the cabin during the normal cyclic changes in oxygen partial pressure. The existing oxygen control system serves as an emergency system to automatically ensure that an adequate level of cabin oxygen partial pressure is maintained, if the WVE system malfunctions.

During normal cyclic WVE operation, the maximum fluctuation in cabin oxygen partial pressure with a six member crer is . 200 and $.228 \mathrm{kPa}(.029$ and .033 psi$)$ for total pressures of 101.35 and $62.05 \mathrm{kPa}(14.7$ and 9.0 psia$)$, respectively. It is, therefore, not expected that cryogenic oxygen make-up would be required unless an upset condition existed. The existing cabin pressure control system would normally have to supply only nitrogen for the maintenance of cabin total pressure for two, four, or six member crews.

For missions during which the WVE would not be in operation (e.g. delivery missions or a rescue mission with a ten member crew) the existing oxygen partial pressure controller would be used to regulate oxygen supply and maintain cabin total pressure from cryogenic supplies.

Power for the WVE controller is approximately $10 \%$ of that necessary to operate the WVE cell stack (approximately 260 watts), and is needed for fifty-three minutes during light side operation.

## TOPIC IV

Comparison to Present Shuttle ECS
The objective of the trade study was to determine the weight and volume advantages of the LARS over the orbiter baseline LiOH system for both power estension package (PEP) and power system missions. The major variables considered were cryogenic $O_{2}$ and $\mathrm{H}_{2}$ requirements, fuel cell usage, and water requirements. The LARS can be installed in the following three steps:

- Replace LiOH with the SAWD subsystem only and vent carbon dioxide overboard.
- Add the WVE subsystem to produce oxygen for netabolic consumption and cabin leakage, and vent hydrogen produced by the WVE cells overboard with the carbon dioxide.
- Add the Sabatier subsystem to convert carbon dioxide and hydrogen to water and methane. The water is recovered for potable usage, and the methane is venced overboard.

The following mission scenarios were considered for the trade study:

- PEP (570 orbit inclination)

Solar power is used on the light side, and orbiter fuel cells produce all power on the dark side. The fuel cells are throttled down to hot start mode on the light side. The following is a summary of fuel cell output:

Light side 58 minutes/orbit 3 kw
Dark side 38 minutes/orbit 14 kw
The weight penalty for solar cells to power the SAWD and WVE subsystems must be included.

- PEP (sun synchronous orbit)

Solar cells provide continuous power. Two fuel cells are throttled down to cold start (. $33 \mathrm{kw} / \mathrm{cell}$ ), and one is throttled down to hot start ( 1 kw minimum) or to an output that produces enough water to meet all needs. The weight penalty for solar cells to power the SAWD and WVE subsystems must be included.

- Power System (with no additional water storage) The power system provides power on the light and dark sides of each orbit. Two fuel cells are throttled down to cold start (. $33 \mathrm{kw} /$ cell), and one fuel cell is throttled down to hot start (l kw minimum) or to an output that produces enough water to meet all needs. No penalty is included for solar cells, since they are not carried with the shuttle at launch.
- Power System (all fuel cells at cold start level) The power system provides power on the light and dark sides of each orbit. All three fuel cells ate throttled down to cold start (.33 KW/cell). No weight penalty is included for solar cell power.

Since the LARS can be installed in three increments, each of these possible configurations must be compared with the baseline LiOH system. The fixed weights for the four systems for all missions are given below:

- Baseline LiOH System
- Hardware includes the portion of the ARS $\mathrm{CO}_{2}$ adsorber and temperature control assembly containing the LiOH cartridges. The temperature control valve and the controller, which form the remainder of the assembly, are common to all systems.
- Contingency LiOH cartridges and storage racks are included to provide $\mathrm{CO}_{2}$ removal for six men during a 20 hour contingency petiod.

The fixed weight summary for the baseline LiOH system is given below:

## Item

## Hardware

Contingency LiOH cartridges (3)
Storage racks (l)
Total fixed weight

Weight-kg (lbm)

| 10.43 | $(23)$ |
| ---: | ---: |
| 9.52 | $(21)$ |
| 3.63 | $\left(\begin{array}{r}8\end{array}\right)$ |
| 23.58 | $(52)$ |

## - SAWD System

- Hardware includes the same fixed hardware as the baseline LiOH system, since the $\mathrm{CO}_{2}$ adsorber assembly is not modified, and the hardware associated with the SAWD subsystem. SAWD hardware includes the SAWD canisters, isolation valves, fans, steam generation equipment, a controller, and structure.
- LiOH cartridges are included for launch and a 20 hour contingency period. One cartridge is provided for launch. If necessary, it provides approximately 8 hours of prelaunch and launch time before the SAWD cycle is synchronized with the orbital period. The SAWD subsystem can ive operated during this time. However, the LiOH cartridge provides additional flexibility, if power is critical. Three LiOH cartridges are required for the 20 hour contingency period.

The fixed weight summary for the SAWD system is given below:

## Item

Hardware
$\mathrm{CO}_{2}$ adsorber assembly $\quad 10.43$ ( 23)
SAKD subsystem
LiOH cartridges (4)
Storage racks (2)
Total fixed weight

Weight-kg (1bm)

$$
\begin{aligned}
10.43 & (23) \\
59.86 & (132) \\
12.70 & (28) \\
7.26 & (16) \\
90.25 & (199)
\end{aligned}
$$

- SAWD and WVE System
- Hardware includes the SAWD subsystem as described above and the WVE subsystem. The WVE hardware replaces the LiOH canister portion of the $\mathrm{CO}_{2}$ adsorber assembly.
- The LiOH cartridge requirement for launch and a 20 hour contingency is the same as that for the SAWD system.

The fixed weight summary for the SAWD and WVE system is given below:

## Item

Hardware
SAWD subsystem 59.86 ( 132)
WVE subsystem
LiOH cartridges (4)
Storage racks (2)
Total fixed weight

Weight-kg (lbm)
47.17 (104)
12.70 (28)
7.26 ( 16)
126.99 (280)
. LARS System (SAWD, WVE, and Sabatier)

- Hardware includes the SAWD and WVE subsystems as described above and the Sabatier subsystem, including $\mathrm{CO}_{2}$ storage and $\mathrm{CO}_{2}$ flow control equipment.
- The LiOH cartridge requirement for launch and contingency is the same as that for che SAWD system.

The fixed weight sumnary for the LARS is given below:

Item
Hardware
SAWD subsystem
WVE subsystem
Sabatier subsystem
LiOH cartridges (4)
Storage racks (2)
Total fixed weight

Weight-kg (1bm)


PEP Mission (57 inclination orbit) Trade Study
The expendables considered for the trade study are water, cryogenics, LiOH, and charcoal. The requirements for each of the systems are described below:

- Water requirements

The fuel cells operate at an average power output 7.35 kw. At this level more than enough water is generated to supply crew needs for all of the systems. Therefore, water storage does not enter into the trade study for this mission.

- Cryogenics usage

Cryogenics usage is righ, due to the high average fuel cell power output. A summary of cryogenics usage for the systems is given below:

Cryogenic Consumption $\mathrm{kg} / \mathrm{day}$ (lbm/day) LiOH or SAWD System SAWD and WVE or LARS

Oxygen

| Metabolic | 4.79 | $(10.56)$ |  | - |
| :--- | ---: | ---: | ---: | ---: |
| Leakage | 0.87 | $(1.92)$ | - |  |
| Fuel cell | 64.82 | $(142.90)$ | 64.82 | $(142.90)$ |
| EVA | 0.29 | $(0.64)$ | 0.29 | $(0.64)$ |
| otal | 70.77 | $(156.02)$ | $65.11(143.54)$ |  |
|  |  |  |  |  |
| yagen | $8.00(17.64)$ | $8.00(17.64)$ |  |  |

It is assumed that the baseline orbiter contains three cryogenics kits. Each kit contains 321.15 kg ( 708 lbm ) of usable oxygen and $3 ? .42 \mathrm{~kg}(82.5 \mathrm{lbm})$ of usable hydrogen. Part of the cryogenics contained in the three kits is required for launch and reentry and for the 20 hour contingency. This weight is common to all systems and was not included in the hardware fixed weight, but must be subtracted from the total usable quantity to determine the quantity of cryogenics available for the sortie part of the mission.

# Usable Cryogenics for Sortie-kg (lbm) All Systems 

Oxygen
Baseline 3 kits 963.27 (2124)
Less fixed wt. Net baseline Additional kit
-97.05 (-214)
866.22 (1910)
321.15 (708)

Hydrogen
Baseline 3 kits $\quad 112.47$ (248!
Less fixed wt. -11.34 (-25)
Net baseline
101.13 (223)

Additional. kit 37.65 ( 83)
The mission duration that can be achieved with the three baseline cryogenics kits for a LiOH or SAWD system equipped orbiter is 12.2 days. The limiting consumable is oxygen rather than hydrogen. With each additional cryogenics kit, the mission can be increased by 4.5 days. Again, oxygen is the limiting consumable.

With a SAWD and WVE system or LARS, the mission duration achievable with the three baseline cryogenics kits is 12.6 days, which is limited by hydrogen. Each additional kit allows a mission extension of 4.7 days. Again, hydrogen is the limiting factor.

- LiOH expendable weight is based on a cartridge life of 1.9 man-days. For a crew of six, including storage racks, the time dependent weight penalty for LiOH is $13.83 \mathrm{~kg} /$ day ( $30.5 \mathrm{lbm} /$ day).
- Charcoal expendable weight for all systems except LiOH is based on a requirement for $.227 \mathrm{~kg}(.50 \mathrm{lbm})$ of charcoal per day or one LiOH cartridge filled with charcoal for every ten days. The time dependent weight penalty including storage racks is $.499 \mathrm{~kg} /$ day (1.10 lbm/day).

Figure 45 shows curves of total weight versus mission length for three cases. The solid line is for the baseline LiOH system. The small dashed line is for a LAPS system without any penalty for the solar power required. The large dashed line includes the solar panel weight required to supply a LARS with approximately 4 kw of power during light side operations at a power penalty of $56.25 \mathrm{~kg} / \mathrm{kw}$ (124 $1 \mathrm{bm} / \mathrm{kw}$ ). Steps in the curves indicate when additional cryogenics kits must be added.


FIGURE 45
LIOH VS. LARS
PEP MISSION
ORBIT $57^{\circ}$ INCLINATION

The LARS compares favorably for missions in excess of 7 days when the solar cell penalty is not considered and for missions in excess of 19 days when the penalty is included. At the end of the sixth cryogenics kit, the LARS results in an increased mission length of one day out of 25 and a weight savings of 39.46 kg ( 87 lbm ).

If only the SAWD system is considered, the cryogenics requirements can be eliminated from the comparison, since they are the same for both the LiOH and SAWD systems. Figure 46 shows this comparison. The SAWD system compares favorably after only 5 days without considering the solar cell weight penalty and after 9 days when that penalty is included. The solar cell penalty is for the 1 kw steam generator required to desorb the SAWD beds. The weight savings at 17 days, which is about the time when the fourth cryogenics kit is expended, is $102.95 \mathrm{~kg}(227 \mathrm{lbm})$.

The volume penalty for the baseline LiOH system over any of the other systems is shown in Figure 47. Additional volume for LiOH storage is required after 7.6 days, when the 27 baseline cartridges, except those required for contingency, are used. After 17 days the additional volume required is 0.34 cubic meters ( 12.0 cubic feet). There is no volume penalty for the LARS system, since it is located in the space where the baseline LiOH cartridges are normally stored.

Power System Mission (no additional water storage) or Sun Synchronous PEP Mission Trade Studies

The consumable requirements for each of the systems are described below:

- Water requirements

A summary of water requirements for the four systems is given in Table 4. The fuel cells are run at a level that provides all of the water needs. Therefore, no additional water storage is required.

- Cryogenics usage
Consumption--kg/day (lbm/day)
LiOH or SAWD SAWD and
System

Oxygen

| Metabolic | $4.79(10.56)$ | - | - |  |
| :--- | ---: | :--- | :---: | ---: |
| Leakage | 0.87 | $(1.92)$ | -- | -- |
| Fuel cells | 14.72 | $(32.46)$ | $18.34(40.44)$ | $15.61(34.41)$ |
| EVA | $0.29(0.64)$ | $0.29(0.64)$ | $0.29(0.64)$ |  |
| Total | 20.68 | $(45.58)$ | $18.63(41.08)$ | $15.90(35.05)$ |



FIGURE 46
LiOH VS. SAWD
PEP MISSION
ORBIT 57* INCLINATION


FIGURE 47
LiOH VS. LARS
PEP MISSION

## Table 4 <br> POWER SYSTEM MISSION (NO ADDITIONAL WATER STORAGE) WATER BALȦNCE KG/DAY (LBM/DAY)

SYSTEM
LIOH SAWD SAWD + WVE LARS

Water Usage

| Potable | 15.51 (34.20) | 15.51 (34.20) | 15.51 (34.20) | 15.51 (34.20) |
| :---: | :---: | :---: | :---: | :---: |
| Non-potable |  |  |  |  |
| Wash | 6.94 (15.30) | 6.94 (15.30) | 6.94 (15.30) | 6.94 (15.30) |
| EVA | 1.24 ( 2.74) | 1.24 ( 2.74) | 1.24 ( 2.74) | 1.24 ( 2.74) |
| WVE | --- | --- | 6.37 (14.04) | 6.37 (14.04) |
| Total | 8.18 (18.04) | 8.18 (18.04) | 14.55 (32.08) | 14.55 (32.08) |

Water Produced

| Potable |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fuel Cell | 16.54 (36.47) | 16.54 | (36.47) | 20.57 | (45.34) | 17.54 | (38.67) |
| (kw)* | ( 1.67) |  | ( 1.67) |  | ( 2.08) |  | ( 1.77) |
| Condensate |  |  |  |  |  |  |  |
|  | 9.50 (20.94) | 9.50 | (20.94) | 9.50 | (20.94) | 9.50 | (20.94) |
| LiOH | 2.34 ( 5.16) |  | --- |  | --- |  | --- |
| Sabatier | --- |  | --- |  | --- | 3.03 | $(16,67)$ |
| Total | 11.84 (26.10) | 9.50 | (20.94) | 9.50 | (20.94) | 12.52 | (27.61) |
| * Two fuel cells are in cold start mode ( 0.333 kw each), and one is in hot start mode (1.0 kw) or at a power output sufficient to supply all water needs. |  |  |  |  |  |  |  |

Hydrogen

$$
\text { Fuel cells } \quad 1.82(4.01) \quad 2.26(4.99) \quad 1.93(4.25)
$$

The times for adding crogenics kits, depending on the system installed, are given below:

Duration--àays
LiOH or SAWD SAWD and WVE LARS System System


- Hardware

The fixed weights for hardware and cryogenics are the same as those for the previous PEP mission trade study.

- LiOH and charcoal time dependent weights are the same as those for the previous PEP mission trade study.

Figure 48 shows a weight comparison between the four systems versus mission duration. A solar cell penalty was not included for power system missions, since the power system is not launched each time. For PEP missions a solar cell penalty of 57.61 kg ( 127 lbm ) for the SAWD system and $226.8 \mathrm{~kg}(500 \mathrm{lbm})$ for the WVE systems must be added to the curves of Figure 48. The steps in the curves indicate when the fourth cryogenics kit is added for the power system mission. The curves show that all three increments of the LARS hardware addition compare favorably to the baseline LioH system in less than eight days. Adding just the SAWD subsystem does not increase mission length, but results in a $699 \mathrm{~kg}(1541 \mathrm{lbm})$ weight savings at the end of the fourth cryogenics kit. The addition of the WVE and Sabatier subsystems does not significantly change the weight, but does increase the mission length. Addition of the wVE subsystem increases mission length by 3.7 days, and addition of the Sabatier subsystem increases the mission by another 10.7 days.

Figure 47 shows a volume penalty of 1.78 cubic meters ( 63 cubic feet) for the baseline LioH system over any of the other three systems.


FIGURE 48
LiOH VS. LARS
SUN SYNCHRONOUS ORBIT
PEP MISSION

Power Sys'eem Trade Study (all fuel cells at cold start)
The consumablf requirements for each of the systems are described below:

- Water requirements

A summary of the water requirements for the four systems is given in Table 5. All fuel cells are run at a cold start level, and additional water storage must be included to supply water needs.

- Cryogenics usage
Consumption--kg/day (1bm/day)
LiOH or SAWD
Lystem or SAWD
LARS or

Oxygen
Metabolic
Leakage

| $4.79(10.56)$ | --- |
| ---: | ---: |
| $0.87(1.92)$ | -- |
| $8.82(19.44)$ | $8.82(19.44)$ |
| $0.29(0.64)$ | $0.29(0.64)$ |
| $14.77(32.56)$ | $9.11(20.08)$ |

Hydrogen
Fuel cell $1.09(2.40) \quad 1.09$ (2.40)
The times for adding additional cryogenics kits are given below:
Duration--days
LiOH or SAWD
System

| Time for 3 58.7 <br> baseline kits $\left(\mathrm{O}_{2}\right)$ | 92.8 |
| :--- | :--- |
| $\left(\mathrm{O}_{2}\right.$ or $\mathrm{H}_{2}$ limited) |  |
| Time Eor each | 21.7 |
| additional kit | $\left(\mathrm{H}_{2}\right)$ |
| $\left(\mathrm{O}_{2}\right.$ or $\mathrm{H}_{2}$ limited) |  |

- Fixed weights for hardware and cryogenics are the same as those for the missions discussed previously.
- LiOH and charcoal time dependent weights are the same as those for the previous mission trade studies.

Table 5
POWER SYSTEM MISSION (ALL FUEL CELLS AT COLD START) WATER BALANCE KG/DAY (LBM/DAY)

## SYSTEM

LiOH SAWD SAWD + WVE LARS
Water Usage
Potable $\quad 15.51(34.20) \quad 15.51(34.20) \quad 15.51(34.20) \quad 15.51(34.20)$

| Non-potable |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wash | 6.94 | (15.30) | 6.94 | (15.30) | 6.94 | (15.30) | 6.94 | (15.30) |
| EVA | 1.24 | ( 2.74) | 1.24 | ( 2.74) | 1.24 | ( 2.74) | 1.24 | ( 2.74 ) |
| WVE |  | --- |  | --- | 6.37 | (14.04) | 6.37 | (14.04) |
| Total | 8.18 | (18.04) | 8.18 | (18.04) | 14.55 | (32.08) | 14.55 | (32.08) |

Water Produced
Potable
$\quad$ Fuel Cell 9.91 (21.84) $9.91(2 亡 .84) \quad 9.91(21.84) \quad 9.91$ (21.84)

Condensate

| Metabolic | 9.50 | (20.94) | 9.50 | (20.94) | 9.50 | (20.94) | 9.50 | (20.94) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LiOH | 2.34 | ( 5.16) |  | -- |  | --- |  | --- |
| Sabatier |  | --- |  | --- |  | --- | 3.03 | ( 6.67) |
| Total | 11.84 | (26.10) | 9.50 | (20.94) | 9.50 | (20.94) | 12.52 | (27.61) |

Supplemental
Water Storage 5.61 (12.36) 5.61 (12.36) 10.66 (23.50) 7.63 (16.83) Requirea

> Make-up For Potable Only

Make-up For Potable And Non-potable

Figure 49 shows a weight comparison between the four systems versus mission duration. A solar cell penalty is not included for power system missions. The step in each curve indicates when the fourth cryogenics kit must be added. The curves show that all three increments of LARS hardware addition compare favorably to the baseline LiOH system in less than nine days. Adding only the SAWD subsystem does not increase the mission length, but does result in a $1005 \mathrm{~kg}(2217 \mathrm{lbm})$ weight savings at the end of the fourth cryogenics kit. The complete LARS installation also shows a weight advantage, and increases mission length by 47 days.

Figure 50 shows the volume penalty associated with the four systems. For all increments of the LARS system, the volume penalty is primarily for water storage. All LARS systems show a significant advantage over the baseline LiOH system.


FIGURE 49

LiOH VS. LARS
POWER SYSTEM MISSION


FIGURE 50
LiOH VS. LARS
POWER SYSTEM MISSION

## TOPIC V

System Effectiveness Studies
System Safety
Nearly all of the components and materials associated $w$ the Lightside Atmospheric Revitalization System are of a f , ive, non-hazardous nature. The two exceptions are the hydr jen product gas and sulfuric acid electrolyte of the wate vapor electrolysis subsystem. The only two high temperature components are the Sabatier reactor and the SAWD subsystem water evaporator. Both of these items are designed to have touch temperatures of less than $45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$. There are no high pressure components in the system. The highest pressure at any point in the system is 455.05 kPa ( 66 psia ) in the carbon dioxide accumulator for the $62.05 \mathrm{kPa}(9.0 \mathrm{psia})$ cabin pressure case. For 101.35 kPa ( 14.7 psia) cabin pressure, the cacbon dioxide accumulator pressure is 744.63 kPa (108 psia). All other system components operate at or near ambient cabin pressure. Since no part of the system operates at a vacuum, there is only a small interface with space vacuum at one point to dispose of methane produced in the Sabatier reactor and excess carbon dioxide.

The sulfuric acid electrolyte in the WVE cells is contained in the Tissuequartz cell matrix. During WVE testing electrolyte carry-over from the cells was never experienced under any test conditions. With proper reservoir sizing and the correct electrolyte charging procedure, the cells cannot be flooded. The cells are initially charged with excess electrolyte. Then, with no electrical power applied, they are subjected to moist air flow, such as $30.56^{\circ} \mathrm{C}\left(87^{\circ} \mathrm{F}\right)$ and $90 \%$ relative humidity. The electrolyte and water reach equilibrium in the cell matrix and reservoirs for this severe condition. Excess electrolyte is removed from the cells during this charging procedure. Now, the cells are compatible with any shuttle conditions including the severe $30.56^{\circ} \mathrm{C}\left(87^{\circ} \mathrm{F}\right)$ and $90 \%$ relative humidity, non-operating case.

The Hamilton Standard Space Systems Department Technical Standard SV-0264 sets specific guidelines for treatment of the hydrogen which is produced by the WVE and used in the Sabatier reactor.

According to these guidelines, the following precautions must be implemented:

1) The volume of the hydrogen carrying lines is to be kept to a minimum. This would allow for a minimum of hydrogen concentration build-up in the event of a leak in a line which had been $\dot{2}$ solated and had emptied into its environment. The cabin vnlume being large compared to hydrogen line volumes heips minimize the potential for concentration build-up.
2) Combustible gas detectors must be used to give a shutdown signal at $0.5 \%$ hydrogen concentration. Shutdown of hydrogen containing subsysters must be completed including a nitrogen purge, before the detectable concentration reaches 2.0\%.
3) All hydrogen containing lines and equipment must be at least $6.89 \mathrm{kPa}(1.0 \mathrm{psi})$ above ambient at all times to maintain a preferred direction of leakage. This prevents the possibility of air leaking into a hydrogen rich area, causing a potentially highly combustible mixture.

The design of the LARS conforms with the above requirements to ensure that the hydrogen produced by the WVE is safely handled.

System Maintainability
The Lightside Atmospheric Revitalization System requires no inflight maintenance other than periodic replacement of the activated charcoal canister ( every 10 days), and is designed for minimum ground turn-around time. The primary components of the three subsystems are the SAWD canisters with integrated water evaporators, the water vapor electrolysis cell pair stack, and the Sabatier reactor. These components are supported by ancillary items, such as thater pumps, fans, accumulators, valves, and controllers. All of the primary and ancillary components can be maintained using a modular replacement concept. For example, a failure of a WVE cell pair would be corrected by replacing the WVE cell pair stack with a refurbished and tested unit. The individual cell pair would then be replaced in the ground support facility, and the entire cell paiz stack would be tested and prepared for installation in another vehicle.

# TOPIC VI <br> Subsystem Sizing and Operating Characteristics <br> SAWD Sizing 

For the solid amine water desorbed carbon dioxide removal system a two bed system is the selected approach. The system schematic of Figure 51, shows the integration of the SAWD subsystem with the other components of the ARS. The desorb/adsorb syhedules for the selected approach and for the alternate one bed approach are shown in Figure 52.

The selected approach utilizes a 72 minute adsorption cycle for each of the two solid amine beds. Each bed is desorbed for 24 minutes once during each 96 minute orbit. During desorption, steam is injected into the bed, desorbing the $\mathrm{CO}_{2}$, which is pumped to approximately 455.05 kPa ( 66 psia ) and ${ }^{2}$ stored in the CO accumulator for subsequent processing in the sabatier reactot. The steam generators are built as integral parts of the canister inlet headers to prevent condensation on the canister by preheating the metal.

The two bed SAWD system consists of two 5.90 kg (13 pound) dry weight beds of solid amine adsorbent. Bed sizing is based on the cyclic SAWD testing in which solid amine was continuously cycled through 96 minute adsorb/desorb periods. Each test run began with steam desorption, followed by an approxinately 52 minute adsorption to give 96 minute cycle. During the adsorption period, air at $.991 \mathrm{~m} / \mathrm{min}(35 \mathrm{CFM})$ was drawn through the $9.53 \mathrm{~kg}_{3}(21 \mathrm{lbm})$ dुry weight solid amine bed exhausting to a $29.31 \mathrm{~m}^{3}$ (1035 $\mathrm{ft}^{3}$ ) sealed chamber. Carbon dioxide was continuously introduced to the chamber at a four man rate of 0.160 $\mathrm{kg} /$ hour ( $0.352 \mathrm{lbm} /$ hour). The weight of the bed could be accurately measured at any time during a run. Instrumentation recorded air flow, bed pressure drop, bed inlet conditions of temperature and dewpoint, and several thermocouples measured the bed axial temperature profile.

As a basis for sizing calculations, a typical test cycle was chosen. Chamber inlet and outlet Cop partial pressures ane shown in Figure 53 in the characteristic breakthrough curve. Absolute bed loadings are $0.259 \mathrm{~kg}(0.570 \mathrm{lbm})$ of CO for a 52 minute cycle time and $0.279 \mathrm{~kg}(0.615 \mathrm{lbm})$ of CO for a 72 minute cycle time. These loadings translate int $C^{2}$ loadings of $0.02714 \mathrm{~kg} \mathrm{CO} / \mathrm{kg}(1 \mathrm{bm} \mathrm{CO} / \mathrm{lbm}) \mathrm{dry}$ bed at the 52 minute cycle time, and $0.02929 \mathrm{~kg} \mathrm{CO}_{2} / \mathrm{kg}(1 \mathrm{bm} \mathrm{CO} 2 / l \mathrm{bm})$ dry bed at a 72 minute cycle time.

Table 6 shows bed capacities at two cycle times, two total pressures, and two $\mathrm{CO}_{2}$ partial pressures. Data from SAWD cyclic tests was extrapolated to $62.05 \mathrm{kPa}(9 \mathrm{psi})$ and $5 \mathrm{mmHg} \mathrm{pCO}_{2}$ through the use of Figures 53 and 54 , which were also devefoped from SAWD test data.



FIGURE 52

ADSORB/DESORB SCHEDULES FOR
SINGLE AND DUAL BED SAWD SYSTEMS


FIGURE 53
TYPICAL SAWD TEST BREAKTHROLGH CURVE

Table 6 SAWD BED LOADING
SAWD BED LOADING $\frac{\mathrm{lbm} \mathrm{CO}_{2}}{\operatorname{lbm~dry~solid~amine~}}$ or $\frac{\mathrm{kg} \mathrm{CO}_{2}}{\mathrm{~kg} \text { dry soifid amine }}$


FIGURE 54
$\mathrm{CO}_{2}$ REMOVAL EFFICIENCY VS. TIME

Parametric Sizing Characteristics
The results of the SAWD testing were used to size a total of six solid amine systems. The results of this sizing eftort are presented in Table 7. The table shows the similarity between a 6 man $5 \mathrm{mmHg} \mathrm{CO}_{2}$ partial pressure (baseline) SAWD design, and a 4 man $3 \mathrm{mmHg} \mathrm{CO}_{2}^{2}$ partial pressure system. While the 6 man system must adsorb $50 \%$ more carbon dioxide, bed weight is only $20 \%$ more than the 4 man system due to the increased bed capacity at $5 \mathrm{mmHg} \mathrm{CO}_{2}$ partial pressure.

Operation at $62.05 \mathrm{kPa}(9$ nsia) total system pressure causes a loss in bed capacity as shiwn in Figure 55. Lower temperature desorption with 62.05 kPa (9 psia) steam is not as effective in regenerating the solid amine bed material. Residual CO , on the bed at the $87.22^{\circ} \mathrm{C}\left(189^{\circ} \mathrm{F}\right)$ desorption temperature results in a 7.38 decrease in adsorption capacity.

## Solid Amine Moisture Control And Cyclic Moisture Equilibrium

From the SAWD test program it was found that if the moisture content of the amine is maintained between $20 \%$ and $35 \%$ of dry bed weight, then $\mathrm{CO}_{2}$ adsorption performance is only a function of bed inlet $C O$ paitial pressure and cycle time as shown in Figure 56. Below and above the acceptable moisture range, performance degrades. To adsorb $\mathrm{CO}_{2}$, the amine groups must be hydrated. Only hydrated amine groups undergo the reversible reaction with $\mathrm{CO}_{2}$ to form bicarbonate ions, and with less than $20 \%$ water on the ${ }^{2}$ bed, performance degrades as non-hydrated amine groups lose their ability to adsorb $\mathrm{CO}_{2}$. Above $35 \%$ moisture loading, there is an inhibiting layer $8 f$ water on the amine heads, which reduces the ability of $6 O_{2}$ to diffuse to the active amine sites.

With continuous air flow at a given relative humidity, solid amine attains an equilibrium moisture content. This is shown in Figure 57. It is apparent that at inlet relative humidities below 708, equilibrium moisture loadings ace below the $20 \%$ by weight required for adequate $\mathrm{CO}_{2}$ removal performance. Fortunately, the cyclic nature of the ${ }^{2}$ SAWD system and the drying characteristics of the bed do not allow bed moisture levels to reach these low equilibrium levels.

The drying of a solid amine bed during adsorption occurs in three phases. Just after a bed is desorbed and returned to adsorption, the hot, wet bed dries rapidly with the outlet air nearly saturated with water vapor at the average bed temperature. Sqlid Amine has a heat transfer area of approximately 6890 $\mathrm{m}^{2} / \mathrm{m}^{3}\left(2100 \mathrm{ft}^{2} / \mathrm{ft}^{3}\right)$ of material, and it operates as a very effective heat exchanger during the initial phase of drying. Cooling is especial y rapid in the front of the bed where $\mathrm{CO}_{2}$ adsorption begins immediately. During this phase of drying, ${ }^{2}$ sensible heat for evaporation comes from the thermal mass of the solid bed material and supporting structure.

SAWD SUBSYSTEM SIZZING SUMYARY

|  | $\frac{\mathrm{kg}(\mathrm{lbs}) \mathrm{CO}_{2}}{\text { Orbit }}$ | Total Bed Weight 101.35 kPa (14.7 psia) kg (lbm) | Total Bed Weight 62.05 kPa (9.0 psia) kg (lbm) | $\mathrm{CO}_{2}$ ads. <br> Rate <br> Required <br> $\mathrm{kg} / \mathrm{hr}$ <br> ( $\mathrm{Ibm} / \mathrm{hr}$ ) | Minimu <br> Air flow <br> Fȩquired <br> m/min(CFM) | Required <br> Air Flow <br> $\mathrm{Based}_{3} \mathrm{On}$ <br> $\mathrm{CO}_{2} \mathrm{~m} / \mathrm{min}(\mathrm{CFM})$ | Specific <br> Air Flow <br> $\frac{\mathrm{m}^{3} / \min }{\mathrm{kg} \mathrm{bed}}$ <br> CFM <br> lb Bed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 Men (3 mitig) 72 min ads. | $\begin{aligned} & 0.2552 \\ & (0.5626) \end{aligned}$ | $\begin{aligned} & 8.85 \\ & (19.5) \end{aligned}$ | $\begin{aligned} & 9.53 \\ & (21.0) \end{aligned}$ | $\begin{aligned} & 0.2126 \\ & (0.4688) \end{aligned}$ | $\begin{aligned} & 0.498 \\ & (17.6) \end{aligned}$ | $\begin{aligned} & 0.750 \\ & (26.5) \end{aligned}$ | $\begin{aligned} & 0.0787 \\ & (1.26) \end{aligned}$ |
| 6 Men ( 5 mmHg ) 72 min ads. | $\begin{aligned} & 0.3828 \\ & (0.8440) \end{aligned}$ | $\begin{aligned} & 10.89 \\ & (24.0) \end{aligned}$ | $\begin{aligned} & 11.75 \\ & 25.9) \end{aligned}$ | $\begin{aligned} & 0.3190 \\ & (0.7033) \end{aligned}$ | $\begin{aligned} & 0.447 \\ & (15.8) \end{aligned}$ | $\begin{aligned} & 0.674 \\ & (23.8) \end{aligned}$ | $\begin{aligned} & 0.0574 \\ & (0.92) \end{aligned}$ |
| 6 Men ( 5 mmkg ) 52 min ads. | $\begin{aligned} & 0.3828 \\ & (0.8440) \end{aligned}$ | $\begin{aligned} & 13.11 \\ & (28.9) \end{aligned}$ | $\begin{aligned} & 14.15 \\ & (31.2) \end{aligned}$ | $\begin{aligned} & 0.4418 \\ & (0.9740) \end{aligned}$ | $\begin{aligned} & 0.620 \\ & (21.9) \end{aligned}$ | $\begin{aligned} & 0,804 \\ & (28.4) \end{aligned}$ | $\begin{aligned} & 0.0568 \\ & (0.91) \end{aligned}$ |


|  | Pressure Drop cm $101.35 \mathrm{kPa}(14.7 \mathrm{psia})$ | $\begin{aligned} & \mathrm{H}_{2} \mathrm{O} \text { (inch } \mathrm{H}_{2} \mathrm{O} \text { ) } \\ & 62.05 \mathrm{kPa}(9.0 \text { psia) } \end{aligned}$ | $\begin{aligned} & \text { Plumbing* } \\ & \mathrm{P} \mathrm{~cm} \mathrm{H}_{2} \mathrm{O} \\ & \text { (inch } \left.\mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$ | $\begin{aligned} & \text { Required } \\ & \text { Fan } \\ & \mathrm{Pcm} \mathrm{H}_{2} \mathrm{O}\left(\text { inch } \mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $4 \begin{aligned} & \text { Hen ( } 3 \mathrm{~mm} \mathrm{mg} \text { ) } \\ & 72 \text { min ads. }\end{aligned}$ | 11.18 (4.4) | 11.18 (4.4) | -2.54 (-1.0) | 8.64 (3.4) |
| $6 \mathrm{Men}(5 \mathrm{mmHg})$ | 11.18 (4.4) | 11.18 (4.4) | -2.54 (-1.0) | 8.64 (3.4) |
| $6 \mathrm{Men}(5 \mathrm{mmHg})$ 52 min ads. | 17.78 (7.0) | 17.78 (7.0) | -2.54 (-1.0) | 15.24 (6.0) |



FIGURE 55
EFFECT OF DESORB TEMPERATURE ON ADSORPTION BREAKTHROUGH


FIGURE 56
SOLID AMINE BED CAPACITY AS A FUNCTION OF $\mathrm{CO}_{2}$ PARTIAL PRESSURE AND CYCLE TIME


FIGURE 57
MOISTURE EOUILIBRIUM LOADING FOR SOLID AMINE

The second phase of drying is at a constant rate, which depends on inlet relative humidity and the rate of $\mathrm{CO}_{2}$ adsorption. During this phase sensible heat transfer from the incoming air to the bed is balanced by latent heat transfer to the air otream. In the absence of $\mathrm{CO}_{2}$ adsorption with its heat release, the bed attains the adiabatic saturation (wet bulb) temperature of the inlet air. Test data indicates that the effect of $\mathrm{CO}_{2}$ adsorption is to elevate the average bed temperature above the wet bulb temperature.

The third phase of drying is the longest part of the drying cycle and is called the falling rate phase. In this phase of the drying process intraparticle diffusion of water becomes important, as the bed material approaches its equilibrium moisture loading for the prevailing relative humidity.

During a 96 minute orbit each bed is desorbed with steam and dried with process air flow. Bed drying rates are most dependent on relative humidity of the inlet air and the bed moisture content. Figurfe 58 shows bed drying rates with various percentagea of initial bed moisture. This figure is a computer simulation of the first two stages of bed drying. The figure was prepared for a 5.90 kg ( 13 lbm ) solid amine bed with $.340 \mathrm{~m} / \mathrm{min}$ ( 12 CFM ) of air flow.

Bed drying rates can be expressed in another manner as shown in Figure 59. At a given bed moisture content and process air relative humidity the minimum cycle time necessary to dry the bed to its initial moisture loading can be calculated. Such calculations were performed using the drying rate theories of phases I and II described earlier. These calculations resulted in Figure 59, which adequately defines equilibrium conditions at higher moisture levels. With higher moisture loadings, drying rates are entirely described by phase I and II conditions, and the bed does not approach the third phase or falling rate period. This method predicts that the bed approaches zero percent moisture loading, which is known to be incorrect. Figure 59, however, does reveal the vertical asymptotes at various relative humidities. The rates of evaporation decrease as bed moisture content approaches the equilibrium value at a given relative humidity. The phases of the curves in Figure 60, which include the effect of the falling rate period, depend on the rates of drying during the final phase of the process, and the shapes of the curves presented are consistent with the SAWD test data.


FIGURE 58
DRYING RATES WITH 50\% RELATIVE HUMIDITY


FIGURE 59
EQUILIBRIUM MOISTURE CONTENT VERSES ADSORPTION TIME (DRYING PHASE I \& II)


FIGURE 60

EQUILIBRIUM MOISTURE CONTENT
AS A FUNCTION OF ADSORPTION TIME

The performance map shor: in Figure 60 was determined from the SAWD testing, During the testing an air flow of $0.106 \mathrm{~m}^{3} / \mathrm{min} / \mathrm{kg}$ ( $1.7 \mathrm{CFM} / \mathrm{lbm}$ ) of dry solid aming was used. The SAWD subsystem of LARS operates at about $0.0624 \mathrm{~m}^{3} / \mathrm{min} / \mathrm{kg}(1.0 \mathrm{CFM} / \mathrm{lbm})$ of solid amine due to the higher allowable $\mathrm{CO}_{2}$ partial pressure of 5 mmHg . This lower air flow reduces drying potential by 3'3\%, but sensible heat loss to the process air is alvo less. With more heat available for latent heat transfer, the result is a net $26 \%$ decrease in drying potential during a given cycle. This means that all curves in figure 60 must be moved right such that a given point has a $26 \%$ longer cycle time than previously. Figure 61 shows the moisture performance map projected for the 72 minute adsorb/24 minute desorb cycle. However, the performance map presented in Figure 61 is extrapolated from the 52 minute adsorption SAWD testing, and testing of solid amine under the two bed operating conditions of 72 minute adsorption, 24 minute desorption is necessary to verify these predictions.

Cabin dewpoint predictions from the transient computer program indicate that cabin dewpoint will vary between $9.44^{\circ} \mathrm{C}\left(49^{\circ} \mathrm{F}\right)$, $21.11^{\circ} \mathrm{C}\left(70^{\circ} \mathrm{C}\right)$ dry bulb temperature, and $16.11^{\circ} \mathrm{C}\left(61^{\circ} \mathrm{F}\right), 26.67^{\circ} \mathrm{C}$ $\left(80^{\circ} \mathrm{F}\right)$ dry bulb temperature. This represents a relative humidity swing in the cabin from 47 to 52\%, and indicates that bed moisture content will remain above the minimum requirement of $20 \%$ under typical cabin operating conditions.

## Sed Steaming Requirements

To desorb the weakly held $\mathrm{CO}_{2}$, steam at 62.05 kPa ( 9 psia ) and $87.22^{\circ} \mathrm{C}\left(189^{\circ} \mathrm{F}\right)$ is generated ${ }^{2}$ within the steam generator. The steam enters the cool solid amine beads and condenses, driving off the adsorbed $\mathrm{CO}_{2}$. Since the steam progresses through the bed in a well defined wave, the $\mathrm{CO}_{2}$ which is desorbed is readsorbed in the cool portion of the bed. As steaming continues, and $\mathrm{CO}_{2}$ is progressively concentrated, the $\mathrm{CO}_{2}$ eventually is eluted from the solid amine bed. The detailed $\mathrm{CO}_{2}^{2}$ desorption process is described more fully later in this section.

Steam requirements for desorption are largely a function of desorption time and bed moisture content. It is obvious from Figure 62 that the total water to desorb the $9.53 \mathrm{~kg}(21 \mathrm{lbm})$ SAWD test bed was a strong function of the initial water loading. This is not surprising due to the high heat capacity of liquid water and the low heat capacity of dry solid amine of 249.82 Joules $/ \mathrm{kg}^{\circ} \mathrm{C}$ ( $\left.0.29 \mathrm{BTU} / \mathrm{lbm}{ }^{\circ} \mathrm{F}\right)$. With a constant steam generation rate, desorption time is quite predictable as shown in Figure 63. This may be extended to give a plot of bed moisture content as a function of desorption time as shown in Figure 64. This dependency is a valuable aid in determining bed moisture loading.


FIGURE 61

LARS PREDICTED MOISTURE CONTENT
AS A FUNCTION OF ADSORPTION TIME


FIGURE 62
DESORPTION STEAM REQUIREMENTS AS A FUNCTION OF BED MOISTURE LEVEL

- Finitimoneme.


FIGURE 63
DESORPTION TIME AS DEPENDENT UPON BED WATER LOADING


Considerably less steam is required to desorb the solid amine bed material at 62.05 kPa ( 9 psia) compared to 101.35 kPa ( 14.7 psia ). This is illustrated in Figures 65 through 67. Note that even the increased bed weight requirement at $62.05 \mathrm{kPa}(9.0 \mathrm{psia})$ does not result in a greater steam requirement.

SAWD System Operating Charicteristics
Air flow enters the system through oi $\because$ two redundant IMU fans with flow split between an orificing vaive and the two parallel SAWD beds. The flow split is su̧ch that . 630 m min ( 24 CFM ) enters the SAWD beds and $.510 \mathrm{~m}^{3} / \mathrm{min}(18 \mathrm{CFM}$ ) bypasses the beds through the orificing valve. Flow from the parallel beds mixes with the bypass flow and enters the contaminant control canister before mixing with the main cabin flow upstream of the cabin fans.

Total subsystem pressure drop is composed of bed pressure drop, ducting losses, and the contaminant canister/LiOH canister pressure drop. For the SAWD beds pressure drop is a weak function of bed moisture loading, as shown in Figure 68. After one bed is desorbed, for a short time it has approximately 10 percent more moisture than the other bed. However, as can be seen from Figure 68, a 10 percent swing in moisture content in a bed causes little change in bed pressure loss, since bed particles swell as moisture is adsorbed. The small increase in pressure arop in a regenerated bed reduces the cabin humidity/temperature spikes due to the slight reduction in flow during the first minute of an adsorption cycle.

Each IMU fan has the performance characteristics shown in Figure 69. The system resistance line also shown in Figure 69 passes through the vertical scale at $-6.35 \mathrm{~cm}(-2.1$ inches) of water, since it discharges upstream of the cabin fans leading to the WVE. Solid amine bed pressure drop for a 15.24 cm ( 6 inch) bed is 10.16 cm ( 4.0 inches) of $\mathrm{H}_{2} \mathrm{O}$ and contaminant canister/duct losses are 3.81 cm ( 1.5 inches) of $\mathrm{H}_{2} \mathrm{O}$ for a total of $13.97 \mathrm{~cm}(5.5$ inches) of $\mathrm{H}_{2} \mathrm{O}$. The $5.33 \mathrm{~cm}\{2.1$ inch) credit results in an IMU fan net pressure rise requirement of $8.64 \mathrm{~cm}\left(3.4\right.$ isaches) of $\mathrm{H}_{2} \mathrm{O}$. The radial flow contaminant control canister has a pressure drop which varies linearly with flow, and therefore, assuming a contaminant canister/duct work pressure drop of 3.81 cm ( 1.5 inch) of $\mathrm{H}_{2} \mathrm{O}$ at. $680 \mathrm{~m} / \mathrm{min}$ ( 24 CFM ), and linear variation $\mathrm{of}_{3}$ this pressure drop with flow, the IMU fan operates at $1.19 \mathrm{~m} / \mathrm{min}(42$ CFM) with a pressure rise of 11.43 cm ( 4.5 inches) of $\mathrm{H}_{2} \mathrm{O}$.


FIGURE 65
SOLID AMINE DESORPTION STEAMING REQUIREMENTS
AS A FUNCTION OF DESORPTION TEMPERATURE
(24 MIN DESORPTION)


FIGURE 66

SOLID AMINE DESORPTION STEAM REQUIREMENTS FOR BASELINE CASE


FIGURE 67

STEAM GENERATOR POWER REQUIREMENTS FOR BASELINE CASE


FIGURE 68
SOLID AMINE BED PRESSURE DROP


FIGURE 69
IMU FAN PERFORMANCE CURVES

When a canister is returned to adsorption after regeneration, flow enters the contaminant canister with a temperature versus time as shown in Figu, e 70, Moist flow from the desorbed bed is mixed with bypass air flow limiting maximum temperatures into the charcoal. Initially there was some concern that the hot moist air flow into the contaminant ca:ister would desorb the contaminants. While it is true that elevated temperature, greater than $100^{\circ} \mathrm{C}$ $\left(212^{\circ} \mathrm{F}\right)$, is capable of desorbing some contaminants from charcoal, the air temperature entering the contaminant canister just after returning a regenerated bed to service is elevated for only a short time. When one bed is being desorbed, the orificing valve indexes to limit flow through the single adsorbing bed to .340 $\mathrm{m} / \mathrm{min}$ ( 12 CFM ). Thuูs, the hot bed effluent flow is mixed with approximately $.850 \mathrm{~m}^{3} / \mathrm{min}$ ( 30 CFM ) of bypass f) ow to reduce contaminant canister inlet temperature to that shown in Figure 70. The temperature/humidity spike entering the contaminant canister is considered to be insufficient to desorb significant quantities of contaminants. Literature indicates that time periods on the order of hours at temperatures above $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$ with hard vacuum are required to desorb an activated charconl bed.

## Desorption Cycle Operating Characteristics

When a bed is to be desorbed, the bed is first isolated by closing the inlet and outlet poppet valves. Simultaneously the variable bypass orifice is indexed to provide proper flow distribution while one of the beds is temporarily out of service. This valve does not index again until both beds have completed desorption. With the spent bed isolated, the outlet valve in the line to the CO compressor and the ullage air valve are opened, and the water evaporator is started to begin steaming the bed. Initially ullage air is pushed from the bed, followed some time later by pure carbon dioxide. The ullage air line is equipped with a flow sensor downstream of the valve, which senses the sudden change in flow rate as co begins to be eluted from the bed. The flow sensor provides a signal to close the ullage valve and start the CO , compressor. A typical desorption profile predicted from data obtained during the SAWD test program is shown in Figure 71.

Steam for the 62.05 kPa ( 9 psia) desorption is senerated in the steam generator, which is fed with water by a positive displacement pump. Approximately $.544 \mathrm{~kg}(1.2 \mathrm{lbm})$ of water are required for the desorption of $\mathrm{CO}_{2}$ from one of the $5.90 \mathrm{~kg} \mathrm{(13} \mathrm{1bm)dry}$ weight SAWD beds at $87.22^{\circ} \mathrm{C}\left(189^{\circ} \mathrm{F}\right)$. Water is pumped from an accumulator to the evaporator through the water jacketed $\mathrm{CO}_{2}$ compressor as shown in the LARS schematic, Figure 51. The water


FIGURE 70
IONTAMINANT CONTROL CANISTER INLET TEMPERATURE

Fithinoans.


FIGURE 71
ESTIMATED $\mathrm{CO}_{2}$ FLOW RATE DJRING DESORPTION
accumulator holds $.862 \mathrm{~kg}(1.9 \mathrm{lbm})$ of water, which is more than adequate to provide capacitance for the SAWD system regeneration. The simplified schematic shown in Figure 72 depicts the system material balance for one complete orbital cycle. Approximately $2.89 \mathrm{~kg}(6.36 \mathrm{lbm})$ of water are available from the condensing heat exchanger output while only about $1.09 \mathrm{~kg}(2.4 \mathrm{lbm})$ of steam are required for desorption.

The $\mathrm{CO}_{2}$ accumulator is sized to contain the desorbed $\mathrm{CJ}_{2}$ from one of the amine beds, $0.191 \mathrm{~kg}(0.42 \mathrm{Ibm})$. The $\mathrm{CO}_{2}$ compressor pumps the effluent $\mathrm{CO}_{2}$ from the desorption pressure of 62.05 kPa ( 9 psia) to $455.05 \mathrm{kPa}(66 \mathrm{psia})$ in the accumulator. The Sabatier reactor requires a feed pressure of 20.68 kPa gage ( 3 psig ), and therefore, the operating pressures for the accumulator are 82.74 $\mathrm{kPa}(12 \mathrm{psia})$ to 455.05 kPa ( 66 psia ). For the storage of 0.191 $\mathrm{kg}_{3}(0.42 \mathrm{lbm})$ of $\mathrm{CO}_{2}$, the accumulator size is $.0283 \mathrm{~m}^{3}(1.0$ $\mathrm{ft}^{3}$ ). The compressbr, which consumes 250 watts while operating (duty cycle is 20 percent), is water jacketed to conserve stemm generator power input. The feed water for the steam generator is preheated by passing it through the compressor jacket.

Selected Approach as Applied to Polar Orbit Mission
FOz a polar orbit mission where power availability is continuous, utilizing a two bed system with a 48 minute adsorption/48 minute desorption reduces system peak power requirements by 50\%. For the baseline air flow and bed weight an increase in cabin $\mathrm{CO}_{2}$ partial pressure occurs and the bed moisture equilibrium is ${ }^{2}$ affected. By closing the bypass valve, ghown in the LARS schematic Figure 51, sufficient flow, $0.906 \mathrm{~m}^{3} / \mathrm{min}(32 \mathrm{CFM})$, is directed through the SAWD beds to compensate in drying potential for the decrease in adsorption time from 72 minutes to 48 minutes. This also maintains average cabin $\mathrm{CO}_{2}$ partial pressure at or below the 5 mmHg design value with a 8 member crew.

Conditioning of Solid Amine Prior to Launch And Upon Reentry
The SAWD beds are pre-conditioned to provide an average bed moisture content of 25 percent at time of launch. This ensures adequate $\mathrm{CO}_{2}$ adsorption performance upon start-up. With a cold bed at start-up, the low bed drying rates keep the bed above 20 percent moisture during the initial adsorption.

The SAWD subsystem can be operated during launch and reentry However, cabin accumulation with 6 men in the shuttle vehicle provides $\mathrm{CO}_{2}$ capacitance for 2.8 hours after launch, provided that the cabin air is initially free of $\mathrm{CO}_{2}$. The SAWD system will provide at least 72 minutes of additional $\mathrm{CO}_{2}$ capacitance without desorption for a total of 168 plus 72 or 240 minutes. This is approximately 2.5 orbits, and provides sufficient time needed prior to the SAWD subsystem start-up, LiOH is available.


FIGURE 72

LARS MASS BALANCE FOR ONE ORBIT KG (LBM)

In preparation for reentry, upon shutdown of the SAWD, one of the four contingency LioH cartridges can be installed in the contaminant control cartridge location. One LiOH canister provides $\mathrm{CO}_{2}$ control for more than 7 hours with a six man rew.

WVE Sizing
The purnose of thi water vapor electrolysis subsystem is to repl.ace, by the dissociation of water, the oxygen required for metabolic consumption by crew members and that lost via all types of cabin leakage.

The electrolysis process is accomplished by imposing an electrical potential across two electrodes, between which is a matrix material impregrated wi.th a strong electrolytic solution. Water from the acid solution is dissociated at the WVE anode to produce oxygen and hydrogen ions. The hydrogen ions migrate, by diffusion and migration in the electric field, to the cathode, where they receive their missing electrons and are combined to produce hydrogen gas.

Water necessary to maintain the reaction is replenished by absorption of water vapor from the air, as shown in the reaction sequence below:

$$
\begin{array}{ll}
2\left[\mathrm{H}_{2} \mathrm{O} \text { air } \rightarrow \mathrm{H}_{2} \mathrm{O} \text { electrolyte }\right] & \text { anode } \\
2 \mathrm{H}_{2} \mathrm{O} \text { electrolyte } \rightarrow \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e} & \\
4 \mathrm{H}^{+}+4 \mathrm{e} \rightarrow 2 \mathrm{H}_{2} & \text { cathode }
\end{array}
$$

The hydrogen produced by the WVE is fed into the inlet of the Sabatier reactor where it is mixed with a regulated flow of carbon dioxide to produce water and methane.

To eliminate the potential of a fire in the hydrogen line, the hydrogen system is maintained at least 6.39 kPa (1.0 psi) above ambient at all times. This overpressure ensures that any leakage is from the hydrogen rich stream into the larger cabin volume, thus diluting the hydrogen mixture, rather than air leakage into the hydrogen rich space.

Combustible gas detectors are used to detect leakage by indicating if hydrogen concentration reaches $0.5 \%$ in the vacinity of the WVE and Sabatier subsysterns.

## WVE Sizing Procedure

WVE sizing is based on performance data obtained during extensive cell pair testing performed by Haxilton Standard under Contract. No. NAS 9-11830. All testing under this contract was done with the vells fitted with an external electrolyce reservoir composed of non-compressed layers of Tissuequartz. Subsequent testing, employing porous titanium reservoirs internal to the cell pair, showed that at 39 amps and a $5.83^{\circ} \mathrm{C}\left(42.5^{\circ} \mathrm{F}\right)$ dewpoint required cell voltage was reduced from 1.73 volts for tire external reservoir cells to 1.70 volts for the internal reservoir design. At 1.70 volts and $5.83^{\circ} \mathrm{C}\left(42.5^{\circ} \mathrm{F}\right)$ dewpoint, for the external reservoir design, only 32 amps of current is produced. Hence the internal reservoir design, because it is more efficient in transporting electrolyte to the electrodes, shows a 21.9\% (39 amps $/ 32 \mathrm{amps}$ ) increase in performance.

All WVE test data was ratioed to reflect this increase in performance. The results, as used in the WVE portion of the integrated thermal model, are shown in Figure 73.

The WVE design point for a six-man system operating at 62.05 kPa ( 9 psia) has the following oxygen requirements:
( 6 men) $(0.798 \mathrm{~kg} \mathrm{O} 2 /$ man day $)=4.79 \mathrm{~kg} /$ day
Metabolic: $(6 \mathrm{men})\left(1.76 \mathrm{lbm} \mathrm{O}_{2} / \operatorname{man}\right.$ day $)=10.56 \mathrm{lbm} / \mathrm{day}$ Leakage: Air leakage rate $\mathrm{kg} /$ day (lbm/day)

$$
\begin{aligned}
& \text { Cabin } \quad 1.666 \text { (3.673) } \\
& \text { Air Lock . } 278 \text { ( .612) } \\
& \text { Tunnel Adapter . } 278 \text { ( .612) } \\
& \text { Waste Management } \quad .680 \text { (1.500) } \\
& 2.902\left(\frac{1.397}{6.397}\right)(.30 \mathrm{~kg} \mathrm{0} / \mathrm{kg} \text { air })= \\
& \text { Total }=\quad 5.66 \mathrm{~kg} \mathrm{O}_{2} \text { day ( } 12.48 \mathrm{lbm} \mathrm{O} \text { (day) }
\end{aligned}
$$

Assuming an average WVE inlet dewpoint of $10^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right)$, using 15 cells would necessitate an average cell voltage of between 1.85 and 1.875 volts per cell. Laboratory tests have shown that cell voltage should be kept below 1.90 volts for sustained operation, to avoid electrolyte degredation and the possibility of matrix dry-out, which could lead to gas cross-over. Examination of cell performance shows that, for a sustained WVE inlet dewpoint of less than $46^{\circ} \mathrm{F}$, individual cell voltages must exceed 1.9 volts to produce sufficient oxygen for a six man crew plus leakage make-up with a cabin pressure of 62.05 kPa ( 9.0 psia ). Analysis has shown that sufficient reservoir volune exists, so


FIGURE 73
WVE 15 CELL PERFORMANCE
that the WVE cell configuration is capable of enduring, without flooding, an emergency condition in which the inlet air stream is at $30.56^{\circ} \mathrm{C}\left(87^{\circ} \mathrm{F}\right)$ with a $90 \%$ relative humidity, while the cells are not in operation.

The WVE, in the Lightside Atmospheric Revitalization System, follows an operating schedule of 53 minutes on and 43 minutes off, during a 96 minute orbit. The WVE is operational during the light side of the orbit when solar coll power is available and off during the dark side of the orbit when solar power is unobtainable.

During the operational portion of the orbit, the WVE cells absorb water vapor from the incoming air stream at a rate proportional to the partial pressure in the stream minus the partial pressure of water in the cells. The rate of absorption is, however, not as great as the rate at which water is consumed in the electrolysis process. This results in a net drying of the cells and an increase in electrolyte concentration. Cell moisture is recovered during the off period by water vapor absorption from the circulating air stream. Release of moisture from the SAWD system into the cabin air circulation system enhances the ability of the WVE cells to absorb moisture and to maintain an acceptable concentration of electrolyte.

A Hamilton Standard water vapor cell pair, sḥown in Figure 74, consists of the following components:

- Titanium outer housings
- Titanium center housing
- Electrodes
- Matrix
- $65 \%$ Void volume titanium reservoirs

The cell pair peripheral housing configuration has been flight optimized for weight and volume, while providing sufficient reservoir volume for intrinsic reliability.

The electrodes are a teflon-bonded, catalyzed, tantalum screen type.

The WVE electrolyte, sulfuric acid, has an infinite theoretical relative huridity tolerance and negligible vapor pressure. Of the suitable acid electrolytes, it has the smailest electrical resistance and gives the least electrode polarization. These properties cause it to require the minimum over-voltage for oxygen production.


FIGURE 74

The cell matrix consists of one layer of Tissuequartz.
The outer titanium housings are platinum plated to minimize electrical contact resistance. The center housings are gold plated for the same reason, and in addition, gold is used to preclude hydrogen diffusion into the titanium base metal, which could cause hydrogen embrittlement.

Sabatier Subsystem
The Sabatier carbon dioxide reduction subsystem receives the hydrogen from the WVE subsystem and the carbon dioxide from the SAWD subsystem, and converts them to water vapor and methane. The water vapor is condensed and stored for potable usage, and the methane and any excess reactant gases are vented overboard. A successful program to design, build, and test a preprototype Sabatier carbon dioxide reduction subsystem has recently been completed.

The Sabatier subsystem schematic is shown in Figure 5l. The carbon dioxide and hydrogen mixture enters the subsystem through a charcoal filter, which protects the reactor from any trace contaminant carryover from the upstream carbon dioxide concentrator or the electrolysis subsystem. The mixture then passes to the reactor, where it is converted to water vapor and methane. The water vapor, methane, and excess $\mathrm{CO}_{2}$ then flow to the air cooled condenser/separator, where the water vapor is condensed, separated from the gas stream and pumped out. The gases (methane, excess reactant, and uncondenseत water vapor) are then vented overboard to space vacuum through a pressure regulator, which also serves to regulate $\mathrm{CO}_{2}$ and $\mathrm{H}_{2}$ supply pressure. A bypass function for $\mathrm{CO}_{2}$ and $\mathrm{H}_{2}$ is provided for emergency shutdown and to permit maintenance on the Sabatier subsystem without interruption of the CO removal and $\mathrm{O}_{2}$ generation processes. The water is pumped out $\delta f$ the water separator by the pressure differential between the reactant pressure and a spring loaded accumulator which maintains a constant pressure drop across the porous plate separator. A positive displacement pump empties the accumulator, when it is full. A fixed air cooling flow is supplied to the Sabatier reactor and the condenser/separator by a bleed flow from downstream of the condensing heat exchanger. A controller is provided to control system operation, to monitor system status, activate bypass operating modes in response to out of tolerance conditions, and provide warnings to the operator. For all operating conditions and modes other than failure modes, the controller is not required to drive any thermal controls, because the Sabatier reactor requires no cooling modulation or heater operation (except at start-up) to meet the full range of performance requirements. The subsystem functions, capabilities, interface definition, schematic and operation are consistent with the RLSE system requirements.

The design of the Sabatier carbon dioxide reduction system is based on an extensive background of both experimental and analytical data with the high activity catalyst, developed and fabricated by Hamilton Standard and designated as UASC-151G. This ca'calyst, ruthenium on a 14-18 mesh granular alumina substrate, permits a simple straight-through plug flow reactor design without complicated heat exchangers. More than one thousand hours of operating time have been accumulated on the catalyst.

The preprototype Sabatier subsystem is designed to meet the requirements of Table 8. The main features of the design are flexibility of operation and simplicity of control. The Hamilton Standard developed catalyst permits operation over a wide range of temperatures, molar ratios, and loads with no active control, while maintaining over $99 \%$ process efficiency. The Sabatier reaction is temperature selflimiting at about $593^{\circ} \mathrm{C}$ ( $1100^{\circ} \mathrm{F}$ ). Therefore, there is no danger of overheating it under any load or molar ratio. Since the catalyst has a high reactivity, the reaction starts at under $177^{\circ} \mathrm{C}\left(350^{\circ} \mathrm{F}\right)$ and maintains itself at low loads without heaters. Cooling flow is set for the maximum load conditions and does not need to be changed for any lower load condition. Electric heaters are required for less than 5 minutes only for the initial startup after a shuttle launch. The compact size and insulating of the Sabatier reactor minimize heat loss, so startup during the light side of each orbit is accomplished without heaters. Two temperature measurements are sufficient to indicate reactor performance status and provide overtemperature protection. The only active controls in the Sabatier subsystem are the limits in the water accumulator to control its pump down.

Performance of the Sabatier subsystem was demonstrated by over seven hundred hours of testing on the preprototype system. Process efficiencies of over $99 \%$ were observed for a range of $\mathrm{H}_{2} / \mathrm{CO}_{2}$ molar ratios of 1.8 to 5.0 for a crew of one person with steady state operation to 3 persons under cyclical operation with a simulated 55 minute light side/39 minute dark side orbital cycle. Tables 9 and 10 show the performance data. An off design 10 person case at a molar ratio of 2.6 with the same cooling flow had a conversion efficiency of 97.l\%. As can be noted in Table 10, testing after a catalyst treatment to remove additional residual chlorides resulted in improved performance.

The effects of varying the dewpoint of the reactant gases and of adding some air to the reactant gases were also tested. Variations in reactant gas dewpoint from dry conditions to $21.1^{\circ} \mathrm{C}$ ( $70^{\circ} \mathrm{F}$ ) showed conversion efficiency variations of less than 0.1\%. A test conducted with $5.1 \%$ air (1\% oxygen) in the inlet reactants showed no catalyst damage as a result of oxygen exposure.

## 

Table 8

DESIGN SPECIFICATION
$\mathrm{CO}_{2}$ FLOW RATE NOMINAL MINIMUM MAXIMUM
$\mathrm{H}_{2} / \mathrm{CO}_{2}$ MOLAR RATIO MINIMUM MAXIMUM

REACTOR EFFICIENCY
REACTANT SUPPLY PRESSURE
REACTANT SUPPLY TEMPERATURE
REACTANT DEW POINT
TOUCH TEMPERATURE MAXIMUM
WATER DELIVERY PRESSURE
START-UP TIME MAXIMUM
GRAVITY
SUBSYSTEM DUTY CYCLE

$$
\begin{array}{cc}
3.0 \mathrm{~kg} / \text { day } & (6.6 \mathrm{lb} / \text { day }) \\
0.9 \mathrm{~kg} / \text { day } & (2.0 \mathrm{lb} / \text { day }) \\
3.6 \mathrm{~kg} / \text { day } & (7.92 \mathrm{lb} / \text { day }) \\
& \\
1.8 & 1.8 \\
5.0 & 5.0 \\
998 & (3.5 \mathrm{PSIG}) \\
1.24 \mathrm{ATM} & \left(65-75^{\circ} \mathrm{F}\right) \\
18-24^{\circ} \mathrm{C} & \text { SATURATED } \\
\text { SATURATED } & \left(113^{\circ} \mathrm{F}\right) \\
45^{\circ} \mathrm{C} & (30 \mathrm{PSIA}) \\
2 \mathrm{ATM} & 5 \mathrm{MIN} \\
5 \mathrm{MIN} & 0 \text { TO } \pm 1 \mathrm{G} \\
0 \text { TO } \pm 1 \mathrm{G} & 0 \\
\text { CONTINUOUS OR CYCLIC }
\end{array}
$$

Table 9
PREPROTOTYPE SABATIER SUBSYSTEM PERFORMANCE CONVERSION EFFICIENCY DURING STEADYSTATE TESTING

| $\mathrm{CO}_{2}$ Flow | $\mathrm{H}_{2} / \mathrm{CO}_{2}$ Molar Ratio |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1.8 | 2.6 | 3.5 | 4.0 | 5.0 |
| 1 Man Continuous | 99.8 | 99.8 | 99.6 | 99.1 | 100 |
| 1 Man Cyclic | 99.7 | 99.7 | 99.2 | 98.2 | 100 |
| 2 Man Cyclic | ---- | 99.7 | ---- | ---- | ---- |
| 3 Man Continuous | 99.3 | 99.6 | 99.3 | 99.0 | 100 |
| 3 Man Cyclic | 99.4 | 99.6 | 99.3 | 98.4 | 100 |
| 10 Man Continuous (off design) | ---- | 97.2 | ---- | -- | -- |

Table 10
PREPROTOTYPE SABATIER SUBSYSTEM PERFORMANCE AVERAGE CONVERSION EFFICIENCY DURING CYCLIC TESTING (55 MINUTES ON--39 MINUTES OFF)

| $\mathrm{CO}_{2}$ Flow | $\mathrm{H}_{2} / \mathrm{CO}_{2}$ Molar Ratio |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1.8 | 2.6 | 3.5 | 4.0 | 5.0 |
| 1 Man | 37.6 | 99.6 | 99.4 | 98.6 | 100 |
| 2 Man | ---- | 99.6 | ---- | ---- | ---- |
| 3 Man | 99.6 | $\begin{gathered} 98.8 \\ (99.4) \end{gathered}$ | 98.1 | $\begin{gathered} 97.4 \\ (98.8) \end{gathered}$ | 100 |

( ) - Test results after completion of test program and catalyst treatment

## TOPIC VII <br> System Integration Studies

The Lightside Atmospheric Revitalization System utilizes the existing ECLS shuttle orbiter volume now used for carbon dioxide control and LiOH storage. Since it may be desirable to install LARS aboard the shuttle in phases, two installation drawings have been prepared. Figures 75,76 , and 77 show the installation of only the SAWD regenerable $\mathrm{CO}_{2}$ removal system. Figures 78 , 79, and 80 show the installation of the entire LARS. The general packaging concept is to locate the WVE cell stack directly down stream of the shuttle cabin fans in place of the two LiOH canisters. The SAWD and Sabatier subsystems are located in the volume presently used for LiOH storage.

As can be seen in Figure 5l, there are five mechanical interfaces between the present shuttle systems and LARS. None of these has a significant impact on the associated system. The line for carrying the methane and excess $\mathrm{CO}_{2}$ to space vacuum can be joined with the present waste management and air lock vacuum line. Other required interfaces are: a nitrogen supply for purging the WVE cells and the Sabatier reactor and condenser; connections between the pure water storage tanks and the Sabatier and SAWD water accumulators; the WVE cell stack interfaces with the cabin fan discharge and the heat exchanger bypass valve; and the SAWD subsystem discharge connection into the cabin fan suction.

The WVE cell stack is oriented, so no change in flow direction is required as the air passes from the cabin fan through the WVE to the heat exchanger. Additionally, the orientaition prevents the launch acceleration loads from acting along the longitudinal axis of the cells, limiting the possibility of electrolyte migration to one end of the cells. The SAWD canisters are arranged to prevent the launch and reentry acceleration loads from potentially causing channelling in the bed material. Therefore, although operation of the SAWD subsystem is not necessary during launch and reentry, its operation is not prohibited.

## Major Component Descriptions

The three subsystems that comprise the LARS have, at minimum, been designed through the preprototype stage. In the case of Sabatier, a preprototype system has been successfully built and tested by Hamilton Standard under Contract NAS 9-15470. Prototype WVE cells were built and tested in the One Man ARS Program under Contract NAS 9-13679. This system was approximately one-quarter sized in relation to the LARS oxygen generation requirement. A
SAWD INSTALLATION DRAWIMG (SHEET 1)

bZてL 甘GSHAS



FIGURE 77


FIGURE 78
LARS INSTALLATION DRAWING (SHEET 1)



FIGURE 80

LARS INSI'ALLAmION DRAWING (SHEET 3)
full scale SAWD subsystem has been built and tested in a breadboard configuration. However, preprototype designs of the SAWD canister and water evaporator are completed. The discussion given below of the major LARS components describes the preprototype designs. However, the weights and volumes of the major components accurately reflect those of flight hardware.

The major components of the SAWD subsystem are the IR-45 canisters, the zero gravity steam generators, the $\mathrm{CO}_{2}$ accumulator, the steam generator water accumulator, the $\mathrm{CO}_{2}$ Compressor, the steam generator water pumps, and the fans.

The SAWD subsystem ras two canisters. The preprototype design is shown schematically in Figure 81 . Each contains 5.90 kg (13 lbm) of dry solid amine material. The canisters have double walls of stainless steel with 2.54 cm ( 1.0 inch) of insulation between the walls. The bed depth is 15.24 cm ( 6 inches), and the bed material is retained on the inlet and outlet by layers of stainless steel feltmetal and perforated plate. Threaded rods hold the bed in place in the canister. The zero gravity steam generator is attached to the inlet header to preheat it during desorption and minimize condensation inside the canister.

The zero gravity steam generator consists of a stairless steel tube with an electric tubular heating element inside. The diametral clearance between the heater and tube is between . 254 and .635 mm (. 010 and .025 inch). Once the heater is inserted into the tube, the assembly can be bent to any convenient shape. In the case of the SAWD subsystem, a flat spiral is convenient for attaching the steam generator to the canister inlet header. Water is fed to the steam generator by a positive displacement netering pump. The pump used in the breadboard system was a variable stroke piston pump. A similar design is feasible for the flight unit. Since the two steam generators operate at different times, one water pump can service both. Two pumps are provided for redundancy.

The water accumulator for the SAWD steam generators is the same accumalator that has been developed for the shuttle water pump package. It is a Metal Bellows Corporation accumulator with a minimum fluid volume of 819.35 cubic centimeters ( 50 cubic inches). The shell is aluminum alloy 6061. The bellows are inconel alloy 718, and the headers are inconel alloy 625.

Two shuttle IMU fans were selected to provide the air flow for the SAWD canisters. Since one fan supplies the required air flow, one is an installed spare. The IMU fan is a centrifugal type, driven by a 3 phase, 400 hertz, 115 volt induction motor. It has a minimum design requirement of $65.32 \mathrm{~kg} / \mathrm{hr}$ ( $144 \mathrm{lbm} / \mathrm{hr}$ ) flow at 1.12 kPa ( 4.5 inches of water) pressure rise with inlet conditions of $101.35 \mathrm{kPa}(14.7 \mathrm{psia})$ and $54.44^{\circ} \mathrm{C}\left(130^{\circ} \mathrm{F}\right)$.


FIGURE 81

Specific component selections have not been made for the carbon dioxide accumulator and compressor. However, the requirements for these components have been determined to provide the necessary information for the packaging study and ${ }_{3}$ system analysis. The $\mathrm{CO}_{2}$ accumulator is a flask with a $.028 \mathrm{~m}^{3}$ ( 1.0 ft ) volume and a maximum normal operating pressure of 744.63 kPa (108 psia). It has a common inlet and outlet connection to receive $\mathrm{CO}_{2}$ from the compressor and supply $\mathrm{CO}_{2}$ to the Sabatier subsystem. ${ }^{2} \mathrm{~A}$ relief valve is provide to discharge excess $C Q_{2}$ overboard. The $\mathrm{CO}_{2}$ compressor must have a capacity of $.028 \mathrm{~m}^{3} 4 \mathrm{~min}$ ( 1.0 CFM ) at a suction pressure of $101.35 \mathrm{kPa}(14.7 \mathrm{psia})$ and a discharge pressure of 744.63 kPa (108 psia).

The primary components of the Sabatier subsystem include the reactor, the water condenser/separator, the accumulator and the water pump. These items were developed for the preprototype system to the standards of space flight hardware, and will not require major modifications for flight use.

The Sabatier reactor has a catalyst bed weighing 460 gms (1.01 1 bm ), and is contained in a cylindrical tube, 34 cm ( 13.5 in ) long and 3.6 cm ( 1.43 in ) in diameter, separated into two zones: the high temperature primary reaction zone; and the cooling or secondary reaction zone. Two heaters for redundancy are used to initially heat the catalyst to start the reaction. The heaters are not required during normal cyclic operating modes, as there is sufficient thermal storage to restart the reaction. The first or primary reaction zone is insulated to prevent heat loss to the cabin and to retain the heat of reaction during the "down" cycle of operation, eliminating power and time requirements for reheating of the catalyst. Two cooling jackets with a fixed rate of cabin air flow surrourd the secondary zone. A platinum resistance temperature (PRI) sensor is located below the heater rod to indicate when the iatalyst and reaction has reached a high or low temperature. knother PRT sensor, located on the outside of the reactor underneath the insulation, is used to monitor the temperature in the event that the bed temperature becomes too high due to failure to turn off the heaters.

The unit is of all stainless steel construction, welded and bolted together with an aluminum perforated sheet outside shell for nanding and touch temperature protection. The catalyst bed is enclosed in a stainless steel tube with a welded cap on the inlet end with an opening for the reactant gas and the heater elements. The heater elements are enclosed in a close fitting sheath for good heat transfer into the primary zone of the catalyst bed. The heaters can be removed and/or replaced without disturbing the bed. The exit end is flanged and bolted with provision for preloading the catalyst bed. The primary zone is insulated with a High Temperature Min K (F 182) blanket. The cooling jacket consists of stainless steel serrated fins wrapped around the bed cylinder for good air flow and heat conduction, covered with a shell of stainless steel.

The condenser/separator is a stainless steel plate and fin heat exchanger. The unit comprises three adjacent layers. The first layer is a single pass $0.51 \mathrm{~cm}(0.200 \mathrm{in})$ high plate and fin construction with a header on one end for avionics or cabin air flow. The water collection pass is a pin-fin plate, that is the cold plate of the system, and is on one side of the cold air pass. The top layer or hot pass consists of a stainless steel porous plate, that is in contact on one side with the pin-fin plate on the other side with a 4 pass configuration of stainless steel serrated fins, separated with stainless steel pass separators. The top plate is a solid stainless steel plate, that is brazed to the top unit. The water accumulator is sized to hold 45 gms ( 0.1 lb ). For 3 -man operation at an $\mathrm{H}_{2} / \mathrm{CO}_{2}$ molar ratio of 2.6 it cycles approximately every 41 minutes daring continuous operation and about every 24 minutes during the on phase of cyciic operation. The pump delivers water to the water management system at 2 atm ( 30 psia), which is the upper pressure limit defined by RLSE.

The only major components in the water vapor electrolysis subsystem are the WVE cell pairs. The internal details of the cells were described in the Subsystem Sizing and Operating Characteristics section of this report. The fifteen cells are arranged in a stack with a gasket seal between the cells to prevent bypass air flow. The cell stack is built into a section of ducting with inlet and outlet headers to mate with the present ARS .

A weight summary for the LARS is given in Table ll. The weights are listed to show the effect of adding the subsystems to the shuttle orbiter in phases. Therefore, as an example, the $\mathrm{CO}_{2}$ compressor and accumulator are listed as weights in the Sabatier subsystem, since they are not necessary if only a SAWD subsystem is installeत.

LARS Instrumentation Requirements
The instrumentation requirements for LARS are listed in Table 12. They are divided into lists for the three subsystems. The requirements include indications for both monitoring and control. Since it is feasible chat the three subsystems would be installed in the shuttle vehicle in Jistinct phases, the instrumentation requirements are listed under the subsystem with which they would be included. For example, the $\mathrm{CO}_{2}$ compressor and accumulator would be installed with the Sabatier subsystem. Therefore, a $\mathrm{CO}_{2}$ compressor indicating light and a $\mathrm{CO}_{2}$ accumulator pressure indiCation are necessary only when the Sabatier subsystem is installed.

Table 11
LARS WEIGHT SUMMARY

SAWD Subsystem

| Items W | Weight kg. | ( 1 bm ) |
| :---: | :---: | :---: |
| Canister assemblies (2) | 22.68 | (50) |
| Fan assemblies (2) | 8.16 | (18) |
| Metering pumps (2) | 4.54 | (10) |
| Water accumulator | 2.27 | (5) |
| Controller | 2.27 | (5) |
| Regulating valve | 2.27 | (5) |
| Solenoid shutoff valves (8) | 6.35 | (14) |
| Support framing | 9.07 | (20) |
| Ducting | 0.82 | (1.8) |
| Tubing | 1.36 | (3) |
| Subsystem Total | 59.80 | (131.8) |
| WVE Subsystem |  |  |
| WVE cell assembly | 36.29 | (80) |
| Contaminant control canister | r 4.08 | (9) |
| Controller | 2.27 | (5) |
| Regulating valve | 2.27 | (5) |
| Solenoid shutoff valves (2) | 1.59 | (3.5) |
| Tubing | 0.68 | (1.5) |
| Subsystem Total | 47.20 | (104) |

Table 11<br>LARS WEIGHT SUMMARY (Continued)

Sabatier Subsystem

| Items | Weight kg. | (1bm) |
| :---: | :---: | :---: |
| Sabatier reactor | 3.40 | (7.5) |
| Sabatier condenser | 1. 32 | (2.9) |
| Charsoal canister | 0.64 | (1.4) |
| Flow sensor | 0.23 | (0.5) |
| Misc. sensors Pressure) $\mathrm{H}_{2}$, temp., | 0.59 | (1.3) |
| Water pump | 4.54 | (10) |
| Water accutulator | 1.13 | (2.5) |
| Controller | 2.27 | (5) |
| $\mathrm{CO}_{2}$ compressor | 4.54 | (10) |
| $\mathrm{CO}_{2}^{2}$ accumulator | 7.71 | (17) |
| Regulating valves (2) | 4.54 | (10) |
| Solenoid shutoff valves (6) | 4.65 | (10.25) |
| Relief valves | 0.23 | (0.5) |
| Support framing | 7.71 | (17) |
| Tubing | 2.04 | (4.5) |
| Subsystem Total | 45.50 | (100.35) |
| LARS Total | 152.50 | (336.15) |

Table 12
LARS INSTRUMENTATION REQUIREMENTS

## Indication

## Purpose

SAWD Subsystem

```
Canister isolate valve position
Fan energized
Solenoid valves energized
Steam generator energized
Water pump energized
Water accumulator level
Bed outlet temperature
Steam generator outlet temperature
CO
```

WVE Subsystem
Cell and total voltage
Oxygen partial pressure
Hydrogen line pressure
Combustible gas detector
Solenoid valves energized
Sabatier Subsystem
Reactor temperature
Hydrogen flow sensor
Water pump energized
Water accumulator level
$\mathrm{CO}_{2}$ accumulator pressure
Reactor heater energized
Solenoid valves energized
monitor
monitor
monitor
monitor
monitor
monitor
steam generator control
steam generator control
ullage valve/CO compressor control
monitor
monitor/WVE voltage
control
monitor
alarm/emergency shutdown and purge control
monitor
monitor/overtemperature shutdown control
$\mathrm{CO}_{2}$ flow control
monitor
monitor
monitor
monitor
monitor

Power Distribution To LARS
A summary of the power requirements for the three LARS subsystems is given in Table 13. Peak values are given. For the SAWD and Sabatier subsystems the peak power requirements are independent of crew size. For the WVE subsystem the peak level given is for a crew of six.

The Sabatier and WVE subsystems would be operated only on missions using solar power. With the exception of control power, all or the power required by these subsystems is drawn during the light side of an orbit. The SAWD subsystem would be operated during either fuel cell or solar powered missions. During solar powered missions, only the fan and controller are operated during the dark side of an orbit. During fuel cell powered missions, since power availability is independent of phase in orbit, the peak power requirement can be significantly reduced by increasing desorption time.

The power requirements of the LARS can be supplied by the existing shuttle orbiter power distribution system. Therefore, no major modifications are required in the electrical system with the installation of the LARS.

## Table 13

LARS POWER SUMMARY
SAWD Subsystem
Steam generator (including water pump) 1300 watts Fan 45 watts Control power 130 watts
WVE Subsystem
Electrolysis power 2570 watts Control power ..... 250 watts
Sabitier Subsystem
Heater (initial startup only) ..... 100 watts
$\mathrm{CO}_{2}$ compressor ..... 250 watts Coftroller ..... 15 watts

## APPENDIX A

Lightside Atmospheric Revitalization System Computer Program Listings

As part of the LARS study, computer programs were developed as analysis aids for the following areas:

- WVE system performance
- SAWD system $\mathrm{CO}_{2}$ performance
- Cabin temperature and humidity with LARS installed

The SAND system $\mathrm{CO}_{2}$ performance program (PROF2) and the cabin temperature and humidity program (LARS-2) listings are included in this appendix. The WVE system performance program is included in the temperature and humidity program as a subroutine.

IFTX．EQ．0．1GO TO 22
ETAI＝EXP $0.6557617 *$ ALOG（X）$-0.16287231 *(A L C S(X) * * 2)$
1 －0．68969727；
22 IFIX．LE．5．1ETAI $=1.0$
COERI＝PCO2C＊CFM＊44．＊ETAI＊TSTEP／760．／0．7302／（TCAB＊460．） RETJRH
EFT：
C
SUEPOUTIHE LDS2IZ，CO2R2，PCO2C，CFM，ETA2，TSTEP，TCAB，
1 QCI，GC2，GEAC）
IFIZ．EQ．0．IGO YO 23
ETAR＝EXP（0．E557617＊ALOG（Z）－0．16287231＊（ALOG（Z）＊＊2）
I -0.687697271
23 IFIZ．LE．5．IETA $2=1.0$
CORR2＝PCO2C＊CFHA44．\＃ETAZ＊TSTEP／760．／0．7302／（TCAB＋460．） PETURS
Et
C
SUEROUTIHE QUTPUT（PCOZC，TIME，QCI，QCZ
KPITE（7，50）PCORC，TIME，RCI，QC2
50 FOPMAT（1X，4（F10．3，1\％3）
PETURH
EFTO
SUEROUTINE HEAD
$\ldots c$
HRITE（7，51）
51 FORMATI
A $00004^{\prime}, 1$ ，
＇CO2 PARTIAL PRESSURE－TMHG：，
C＇TIIIE IHITO ADSORE－MIH＇＇$t$ ，
C＇TIIIE IHITO ADSORE－MIH＇／／s
＇TOTAL CO2 REMONED IN EED 1－iBS＇，／，
E＇TOTAL COZ REMO＇VE IH BED z－LBS＇，$/$ ，

RETURH
00000500
00060510
0．0000520
00006530
00000540
00000550
09000560
งロコン0565
00000570
00060570
00000580
00000590
00003600
$0006 C 610$
00000520
00060630
00000640
c0000t50
0000 C 655
c0000660
00000670
00000670
00000680
00000690
00000700
00600720
00000725
00000730
00000740
00000750
000000760
00003760
00060770
00000780
00000790
00950800
$0003 C 810$
00000820
**** TSO FOPEGRCUHD HAFCCOPY ****
OSHAME $=$ TSOSI5K. LARS2 . FOPT


CALL YAHOF: PKI,OFMIX.IJ C0001120

## OELTAT=DPMIt-T4

IFCDELTAT.GT.0.0)G:TFA=WA\#. 24*DELTAT
IFIDELTAT.LE.O.OJGXTPA=0.0
HCOXTA $=\mathrm{ZKTFA} / 1200$.
HATER=HATEP H HEORTA
GL4=9L4-GATPA
GÉ4=GE4+GXTPA
EHT--EHEOGY ARSOFEED LZiEN SAND HATER PE-EVAPOPATES
IF(DELTAT.LT.0.0) GFEHT=DELTAT*HA* . 24
IF(DELTAT.GE.0.0) GDEHT $=0.0$
IFIOELTAT.LT.0.0) HATER=NATER+QREHT/1000.
IFIWATEP. LT. O. O HATEP $=0.0$
IF(WATER.EQ.0.0) GREHT=0.0
IF(DELTAT.LT.0.0) QL4=QL4-GREHT
IF(DELTAT.LT.0.0) QSi = GS4+GREHT
121 COHTIN:
hnisf=0
AHCAEO=AHCAB
IF(TIME.GT.0.0) GO TO 90
C CABIN INLET TEMP

C HX OUTLET TEMP-ZEFO BYPASS $T 5=T 7-25 / 4 A / .24 /(1 .+A H / O)$
. IS HX OUTLET TEMP TOO LCH IF(ITS-TCI).GE. 2. JGO TO 61
C HX TOD SMALL-RAISE CABIN TEMP T1 $1=$ T1 + TCI $+2 .-$ T5
C . SET rE' THAT TCAB HAS EEEH RAISED
LL=2
C FIWO UAR FCR FULL FLCH COHOITIOH CEHDEHEEP IHLET DEH POINT
61 PYI=FDP
CALL KAROK $P S \times O . T 5,2)$
$A H \prime O=. E 22-P S \neq 0 /(P C-P S X O$
AH:I=AHKO COTL/HA/(IC67.
FKI=PC/(.622/AhXIt1.)
CALL KAMOK (PYI,TOPI,1)
OT=(T4-TCO-T5+TCI)/ALCG( (T4-TCO)/(T5-TC).)
UA
UAR=QT/OT
C IS HX UA IH TOLERERCE
IF (AES(ULRJUAA-1.).LE.0.01) 60 TO 75
HOT CCHVEPRED-IS HX TOO SMALL
IF(UAR.LT.UAA) GO TO 70
HX TOO S:IALL-RAISE CABIH TEMP LL=2
HSV MLCH SHOULD TEMP BE RAISED
IFIUAANUAR.GT.O.5) GO TO 80
$C$ FAISE TCAB 2 DEG F
TIN=Tl+2.
GAISE CABIM TEMP I DEG F
80 TIH二Tİ1
UEH METAEOLIC SPITT
HEH METAEOLIC SPLIT
CALI GMETITIN-459.6,QSI,QLI
Hz: SEHS LOAD
QTS=QTSS+QS1
HX LATEHT LOAD

0 0001130 ©co01140 00001150 00001160 00051170 60001150 00001150 00001200 $000 c 1200$ 0c001210 06001220 0 OCOO1230 00301240 $00 c 01250$ 00031260 00001270 00001280 00001250 00001300 $0 \cos 1310$ coas1320 Coos1320 00001330 0cc32340 00001350 cooni3to $00 C 01370$ 00001380 00301390 ccsol4co 00001410 00001420 00001420 03001430 $00 C 01440$ 00001450 00001460 00001470 00001480 00001490 00001500 00001510 cc0015:0 C60015:.0 03001530 $03 C 01540$ 00001550 00001560 0 0co01570 00091580 00001590 00001600 00001610 00001620 30001630 0001630 00001650 02001658 $000016:$ 06001670 $050 C 1680$ 00001690 00601700 00001710

839 CALL WVETTSTEP，T4，PXI，PC，TDPI，T22，CFM3，EV，TIME，POHER，DP，AKVEX） QLWVE $=(H I+H S A W D) *(A H X I-A L V V E X) 00002325$ F（TIME HE O．O）GO TO 72
0002325
00002330
00002340
$000023: 0$
00002360
00002370
00002350
00002390
00002400
00002410
00002410
00002420
00002430
00002440
00002450
00002460
00002470
00002473
00002476
00002480
00002490
00002490
00602500
0002510
00002520
00002530
00002540
00002550
00002560
00002570
00002580
C 200 NO
00 continue
232 FORMAT（ $2 \mathrm{X}, 6(1 \mathrm{X}, \mathrm{F} 10.4$ ）
C LOOP HOT COHVEPGED
00002590
0002500
C WPITE（IL，504） $\mathrm{HHX}, \mathrm{T5}$, T4，UAR
75 IFITIME．EQ．O．0 $\mathrm{HHX}=\mathrm{WA}$
C LCOP COHVERGED－SET UP FOR PRIHT OUT－CABIN DEH PT
72 EMCAB＝CASVOL＊RHO2
707 FCRMAT（2X，5（2X，F9．3））
KSYP $=\mathrm{HI}+\mathrm{HSALD}-\mathrm{HHX}$
$A H M I X=(A H X I * H B Y P+A H X O * W H X) /(W B Y P+W H X)$
PMI＇$=$＝PC／（ ．622／AHMIX＋1．）
CALL KANDK（PMIX，T7DP，1）
IF（TIME．EQ．0．0）GO TO 13
$T 7=($ HHX＊T5＋KBYP＊T22）／（WI＋WSAWD $)+$ Q6／WA／． $24 /(1 .+A H M I X)$
TDUCT $=T 7+($ QSI + GEI $) /(W I+Y S A H D) / .24 /(1 .+A H M I X)$
$E M C A B=C A B V O L * F H O 2$
00002610
00002620
00002630
0002640
00002650
00002660
00002670
00022680
00008690
00002693
00002693
00002696
00002700
00002710
00002720
00002730
00002740
$T I=(T D U C T *(W I+W S A W D) * D E L T I+T I * E M C A B) /((W I+W S A W D) * D E L T I+E M C A B) 00002750$
C KRITE（11，626）TT，TDUCT，TI，WBYP
13 FORMAT（2X，4（2X，F8．2））
00002760
00002770
C0002780
00002780
00002800
00002800
$000 \check{0} 810$
00002820
00002830
00002830
09002850
00002850


```
    J' COHO BYPASS AIP HT FLOW--LEH/HR'/
    V' WNE RERUIFED CELL VOLTAGE--VOLTS'/," (4(1X,6(F10.3,1X)/1)')
        IF(ICOUHT,GT.JCCUHIT, AHO.ICYC.EQ.2.OR.TIME.EQ.5760.)
    EHRITE(B, 97GITIMET,TA,TE,TC,
```



```
979 FCFHAT(4(1X,6(F10,3,1K1H))
    IFIICOUNTT.GT.JCCUNTT. ARS.ICYC.EQ.2.OR .TIME.EQ.5760.
    IWPITE(11,512,QS1,GLI,UAA,GUAH,PONER
        IFIFICEEO.EQ.2IGO TO 777
        IF(TIME.EG.8640.0.OR.TIME.EQ.9120. HRIITEIIL,778IDP,TTOP,QCOND,
    IGLAT,QSEISSI,T2Z,QLHVE
778 FOFMAT(2X,711K,F10.1))
777 IF(HCSED.EQ. 1) CO TO }77
    IFITIME.EQ.7440.0.CP.TIME,EQ.9120. WRITE(II,77810P,T70P,QCOWD,
    IFITIME.EQ.7440.0.CP.
779 CC!NTIHUE
            TIME=TIME +TSTEP
            IF(TIME.LE.TEHDIGO TO I
9 9 9 ~ R E T U F H ~
    501 FCRMATIIH ' **天**** ' 
    01. FCPMATIIH * ****** *
        1
                ;'FLOW RATE LOOP NOT COHVERGED
    2 Ho.',12)
```



```
                8.2,8H WA
                    FB.1,8H WACAL
                    F8.1,8H TFAHIN FB.4,8H PD
    FORMATIIH F8.1,8H WA FB.1,8H HACAL FB.1,8H TFAIIIN FB.4,8H POPCOOO5367
    2 , ******'/)
    03 FCRMATIIH. ****** , 00003628
    1 ,CABIH TEMP LOOP HOT CONVERGED //FB.2,BH TCAB F8.1,8H 000003630
        *.1,84 00003640
    2 WAIR F8.5,3H AHXO F8.1,8H UAR F8.2,8H TOPI F8.2,8H TAXO CODC3650
    3 F8.2,8H TAXI /F8.1,EH QTOT F8.1,EH GSMET, , 00CO3660
    504 FOPMATIIH % **##%* ', 00003570
    I 'FLOH SPLIT LOOP HOT CCHVERGED' /F8.2,BH WHX F8.2,8H 00003550
    2TAXO FB.2,BHTTAXI F8.2,EH UAR F******/1 ma, FQ.2.0M 00003550
    510 FORHATLIHO' CAEIN AIR LONS PERFORMANCE '/ 00003700
    510 FORHATLIHO' CAEIN AIR LONP PERFORMANCE '// 00CO3700
    #' CABIM TEMP FM, T1 ',F8.2,/ 00003710
    3' FAH INLET TEMP OULET TEMP T2 ',F8.2,/ 0,% 00003720
    5" OUTLET TEMP THLET TEHP TS *,FB.2,% 00003730
    5. COHDENSER AIR IMLET TEHP T4 #,FS.2.% 00003740
    7' CABIH INLET TEMP [ET TEHP T5 ',F8.2,'/ 00303750
    8. COHDEHSER IHLET DEH POIHT *,F8.2,% 00003770
    9' CAEIN DEH FOIHT ',F8.2,% 000037E0
    A' COHDENSER HEAT LOAD - TOTAL ',F9.1,/ OC003790
    B' SENSIBLE ',F8.1,% 00003800
    C' LATENT ,FF9.1,% 00003310
    E. AIR FLON RATE LB/HR - FAH OM,FB.1,% OCOOS320
    CONOENSER COOLART CONCEHSER :,F8.1,% ..........00003330
    00003840
    00003850
    00903860
    00003870
    00c03880
    0 0 0 0 3 8 9 0
    00003900
    00003900
    00093910
    00003520
    000G3930
    00003940
    00903%50
    C0503408
    EHO


\footnotetext{

}
    G \(720 ., 770 ., 830 ., 870 \ldots\)
H \(820 ., 870 ., 960 ., 1010 .\),
00004570
I 850..950.,1030..1100.
c
WE=HA*(QS \(4 Q L\) )/QS 00004580 00004590 00004600 \(0000 \div 610\) \(0000 \div 620\) \(0000 \div 530\) CALL BIQUAD(HXUA,1,WE,WC,UA,K) \(0000^{\prime}+530\) RETURN
00004640 EtiD
00004640
SUEROUTIHE SAWD2(TCAB,TDPC,QS4,QL4,TSTEP,PC,CFM,Q,RHO2,AHCO,TIME, \(0000 \div 860\)
00004670
REAL K,MHA, MDAA, HDAB,KA,KB 00004680
KOUNT=0 , MOA, MOAB,KA,KB
00004620
09004690
00004700
00004710
00004720
00004730
00004740
00004750
00004760
00004760
00004770
00004780
00004790
00004800
00304910
00004820
00004830
00304840
00004850
00034850
\(0000+800\)
00004870
00604880
00004890
00084900
00004910
00004920
00004930
00004940
00004950
03004960
03004960
00004970
00004950
06004950
00005000
06065010
05005020
00005030
\(0 C 005040\)
02005050
00c050to
00005070 00005070 \(000 C 5080\) 00005090 00005100 00065110 00005120

HATER FROM EEDS (LEM/TIME-STEP)
DELWA=ACOHST*MOAA*.62こ\# (PA/(PC-PA)-PSATI/(PC-PSATI))*TSTEP/60.*K IF(TIME.GT. 1630 .) WRITEI 11,242 )MDAA, PA, PC, DELHA, TIME
242 FOFMAT( \(2 X, 5(1 X, F 11.2), 2 X, F 12.41\)
DELHS \(=B C O: 1 S T * H D A E * .622 *(P B /(P C-P B)-P S A T I /(P C-P S A T I)) * T S T E P / 60 . * K\). IF(DELHA.LT,0.0)DELWA=0.0
IFIDEIWS. TT O O IDEIW3
- LATENT HEAT FPOM EEDS (BTU/HR 02005240 \(\begin{array}{ll}Q L+A=1000 . * D E L H A+3600 . / T S T E P & 00005250 \\ Q L 4 B=1000 * D E L K E * 3 S 00 . / T S T E P & 00005260\end{array}\)

00005270 00005270 00605280 00005290 00005300 00005310 03005320 00005330 00005340 0000535 00005350 00005360 co005370 00005380 00005390 C0005400 \(60005+1 \mathrm{C}\) 00005440 00005450 00005460 000 C 5462 00065462 00005464 00005466 00005470 00005480 00005490 \(000 c 5500\) 00005510 00005520 00005530 0 0005540 0005540 0000555 0005560 0005570 00005580 00005590 00005000 0 0005610 00005620 00005630 \(00 C 05040\) 0005650 0005650 C005650 0035070 0065630 00005690 00005700 00005710 00005720 00005730 00005735 00005740


C CALCULATING ELECTRODE TEMPERATURE

\section*{IF（TIME．NE，0．01TE2 \(=\) TE1 \(+2.75 E-04 / E M C P *(Q-(T E 1-T) / P H I)\)} THETA＝．043／（TUEGR）＊＊．275＊SQRT（CELLS＊VDOT／P） DELP＝PPHEOI－PF：ITX
HATER YAFOR ABSCDBED BY CEELS（LBM／TSTEP） HEOASS＝2．717E－04＊DELP＊TSTEP／60．
H2CDEL＝H2OCON－HCOABS
H2CMTX＝H2OMTX－H2CDEL
HEIGHT PERCEMT OF SULFURIC ACID IH CELLS以H2504 \(=.2853 /(, 2853+H(O M i X) * 100\) ． PMTK＝PPITTX
CALL BIGUAD（VPRESS，I，TE2，WH2SG4，PPMTX，K）
\({ }_{C}^{C}\)
stendy state matrix partidl pressure
PMYXSS＝PPHCQI－1．183E－03＊AMPS＊SQRT（P） PFAKE＝（PPH2OI＋PFMTX－PMTXSS \(1 / 51.7\)
IF（AMPS．NE．O．0）CALL KANDK（PFAKE，DPFAKE，I）
AIR CELL EXIT TEMPERATURE
IF（TIME．NE．0．）T22＝T21＋3．7E－03／（P＊VDOT＊EMCP＊PHI）＊（Q－（TE1－T）／PI：\()\) IF（TIME．EQ．O．OJTER＝TEI
TEI＝TE2
TEIETE2
IFITIME．EQ．0．01T22＝T21
「21＝T22
\(r=T 22+460\).
\(T=T+460\) ．
EXIT AIR PARTIAL PRESSURE AND DEWPOINT PPH2OX＝（ PPHLOI－TDEGR／（1．95＊ンOOT）＊THETA＊（PPH2OI－PMTX））／51．7 IFITIME．EQ．O．0）PFH2OX＝FPHEOI／51．7
CALL KANOK（PPH2OX，OPEXIT，I）
ANVEX \(=.622 * P P H 20 \mathrm{~K} /(\mathrm{PC}-\mathrm{PPH} 20 X)\)
IF（O2．EQ．0．0）EV \(=0.0\)
C WVE PONFR REQUIRERENTS PCKER＝EV＊CELLS＊AMPS／1000．
RETURN
ENO

00006350
00006360
00000370 00006380 00006390 00006400 00205410 00006420 00006430 000064440 00006440 00005459
00006400
\(000 C 6470\)
00006480
00006490
00066500 00006510 00006520 00066530 00000540 00000550 00026500 00026560 \(00 c 06570\) 00006560 00005590 00005600 00000610 00006620 00006630 00000640 00006645 00006645 \(0000 \therefore 650\) 00006660 00006670 00006680 00206696```


[^0]:    * Baseline Case

