2,308 research outputs found

    Improved throat inserts for ablative thrust chambers

    Get PDF
    Composite material development and structural design of improved throat inserts for ablative thrust chamber

    Binscatter Regressions

    Full text link
    We introduce the \texttt{Stata} (and \texttt{R}) package \textsf{Binsreg}, which implements the binscatter methods developed in \citet*{Cattaneo-Crump-Farrell-Feng_2019_Binscatter}. The package includes the commands \texttt{binsreg}, \texttt{binsregtest}, and \texttt{binsregselect}. The first command (\texttt{binsreg}) implements binscatter for the regression function and its derivatives, offering several point estimation, confidence intervals and confidence bands procedures, with particular focus on constructing binned scatter plots. The second command (\texttt{binsregtest}) implements hypothesis testing procedures for parametric specification and for nonparametric shape restrictions of the unknown regression function. Finally, the third command (\texttt{binsregselect}) implements data-driven number of bins selectors for binscatter implementation using either quantile-spaced or evenly-spaced binning/partitioning. All the commands allow for covariate adjustment, smoothness restrictions, weighting and clustering, among other features. A companion \texttt{R} package with the same capabilities is also available

    On Binscatter

    Full text link
    Binscatter is very popular in applied microeconomics. It provides a flexible, yet parsimonious way of visualizing and summarizing large data sets in regression settings, and it is often used for informal evaluation of substantive hypotheses such as linearity or monotonicity of the regression function. This paper presents a foundational, thorough analysis of binscatter: we give an array of theoretical and practical results that aid both in understanding current practices (i.e., their validity or lack thereof) and in offering theory-based guidance for future applications. Our main results include principled number of bins selection, confidence intervals and bands, hypothesis tests for parametric and shape restrictions of the regression function, and several other new methods, applicable to canonical binscatter as well as higher-order polynomial, covariate-adjusted and smoothness-restricted extensions thereof. In particular, we highlight important methodological problems related to covariate adjustment methods used in current practice. We also discuss extensions to clustered data. Our results are illustrated with simulated and real data throughout. Companion general-purpose software packages for \texttt{Stata} and \texttt{R} are provided. Finally, from a technical perspective, new theoretical results for partitioning-based series estimation are obtained that may be of independent interest

    Dealing with Limited Overlap in Estimation of Average Treatment Effects

    Get PDF
    Estimation of average treatment effects under unconfounded or ignorable treatment assignment is often hampered by lack of overlap in the covariate distributions. This lack of overlap can lead to imprecise estimates and can make commonly used estimators sensitive to the choice of specification. In such cases researchers have often used informal methods for trimming the sample. In this paper we develop a systematic approach to addressing lack of overlap. We characterize optimal subsamples for which the average treatment effect can be estimated most precisely, as well as optimally weighted average treatment effects. Under some conditions the optimal selection rules depend solely on the propensity score. For a wide range of distributions a good approximation to the optimal rule is provided by the simple selection rule to drop all units with estimated propensity scores outside the range [0.1, 0.9].Average Treatment Effects, Causality, Unconfoundness, Overlap, Treatment Effect Heterogeneity

    Moving the Goalposts: Addressing Limited Overlap in Estimation of Average Treatment Effects by Changing the Estimand

    Get PDF
    Estimation of average treatment effects under unconfoundedness or exogenous treatment assignment is often hampered by lack of overlap in the covariate distributions. This lack of overlap can lead to imprecise estimates and can make commonly used estimators sensitive to the choice of specification. In such cases researchers have often used informal methods for trimming the sample. In this paper we develop a systematic approach to addressing such lack of overlap. We characterize optimal subsamples for which the average treatment effect can be estimated most precisely, as well as optimally weighted average treatment effects. Under some conditions the optimal selection rules depend solely on the propensity score. For a wide range of distributions a good approximation to the optimal rule is provided by the simple selection rule to drop all units with estimated propensity scores outside the range [0.1, 0.9].average treatment effects, causality, unconfoundedness, overlap, treatment effect heterogeneity

    Nonparametric Tests for Treatment Effect Heterogeneity

    Get PDF
    A large part of the recent literature on program evaluation has focused on estimation of the average effect of the treatment under assumptions of unconfoundedness or ignorability following the seminal work by Rubin (1974) and Rosenbaum and Rubin (1983). In many cases however, researchers are interested in the effects of programs beyond estimates of the overall average or the average for the subpopulation of treated individuals. It may be of substantive interest to investigate whether there is any subpopulation for which a program or treatment has a nonzero average effect, or whether there is heterogeneity in the effect of the treatment. The hypothesis that the average effect of the treatment is zero for all subpopulations is also important for researchers interested in assessing assumptions concerning the selection mechanism. In this paper we develop two nonparametric tests. The first test is for the null hypothesis that the treatment has a zero average effect for any subpopulation defined by covariates. The second test is for the null hypothesis that the average effect conditional on the covariates is identical for all subpopulations, in other words, that there is no heterogeneity in average treatment effects by covariates. Sacrificing some generality by focusing on these two specific null hypotheses we derive tests that are straightforward to implement.average treatment effects, causality, unconfoundedness, treatment effect heterogeneity

    Moving the Goalposts: Addressing Limited Overlap in the Estimation of Average Treatment Effects by Changing the Estimand

    Get PDF
    Estimation of average treatment effects under unconfoundedness or exogenous treatment assignment is often hampered by lack of overlap in the covariate distributions. This lack of overlap can lead to imprecise estimates and can make commonly used estimators sensitive to the choice of specification. In such cases researchers have often used informal methods for trimming the sample. In this paper we develop a systematic approach to addressing such lack of overlap. We characterize optimal subsamples for which the average treatment effect can be estimated most precisely, as well as optimally weighted average treatment effects. Under some conditions the optimal selection rules depend solely on the propensity score. For a wide range of distributions a good approximation to the optimal rule is provided by the simple selection rule to drop all units with estimated propensity scores outside the range [0.1,0.9].

    Nonparametric Tests for Treatment Effect Heterogeneity

    Get PDF
    A large part of the recent literature on program evaluation has focused on estimation of the average effect of the treatment under assumptions of unconfoundedness or ignorability following the seminal work by Rubin (1974) and Rosenbaum and Rubin (1983). In many cases however, researchers are interested in the effects of programs beyond estimates of the overall average or the average for the subpopulation of treated individuals. It may be of substantive interest to investigate whether there is any subpopulation for which a program or treatment has a nonzero average effect, or whether there is heterogeneity in the effect of the treatment. The hypothesis that the average effect of the treatment is zero for all subpopulations is also important for researchers interested in assessing assumptions concerning the selection mechanism. In this paper we develop two nonparametric tests. The first test is for the null hypothesis that the treatment has a zero average effect for any subpopulation defined by covariates. The second test is for the null hypothesis that the average effect conditional on the covariates is identical for all subpopulations, in other words, that there is no heterogeneity in average treatment effects by covariates. Sacrificing some generality by focusing on these two specific null hypotheses we derive tests that are straightforward to implement.
    corecore