174 research outputs found

    The Dispersion Velocity of Galactic Dark Matter Particles

    Get PDF
    The self-consistent spatial distribution of particles of Galactic dark matter is derived including their own gravitational potential, as also that of the visible matter of the Galaxy. In order to reproduce the observed rotation curve of the Galaxy the value of the dispersion velocity of the dark matter particles, \rmsveldm, should be \sim 600\kmps or larger.Comment: RevTex, 4 pages, 1 ps figure, accepted for publication in Physical Review Letter

    A General Approach to Casimir Force Problems Based on Local Reflection Amplitudes and Huygen's Principle

    Full text link
    In this paper we describe an approach to Casimir Force problems that is ultimately generalizable to all fields, boundary conditions, and cavity geometries. This approach utilizes locally defined reflection amplitudes to express the energy per unit area of any Casimir interaction. To demonstrate this approach we solve a number of Casimir Force problems including the case of uniaxial boundary conditions in a parallel-plate cavity.Comment: 9 pages, 5 figures, Equation 18 has been corrected, [v1] contained a typ

    Optical Photometry of the GRB 010222 Afterglow

    Get PDF
    The optical afterglow of GRB 010222 was observed using the recently installed 2-m telescope at the Indian Astronomical Observatory, Hanle, and the telescopes at the Vainu Bappu Observatory, Kavalur, beginning ~ 0.6 day after the detection of the event. The results based on these photometric observations combined with others reported in the literature are presented in this paper. The R band light curve shows an initial decline of intensities proportional to t^{-0.542} which steepens, after 10.3 hours, to t^{-1.263}. Following the model of collimated outflow, the early break in the light curve implies a very narrow beam angle (~ 2-3 deg). The two decay rates are consistent with the standard jet model in a uniform density ambient medium, but require a hard spectrum of electron power density with p ~ 1.5. The R band light between 14 and 17 hours since outburst departs from the power law fit by 0.1 mag and shows some evidence for fluctuations over timescales of an hour in the observer's frame. Such deviations are expected due to density inhomogeneities if the ambient medium is similar to the local interstellar medium. GRB 010222 is thus an example of a highly collimated outflow with a hard spectrum of electron energy distribution in normal interstellar environment.Comment: 15 pages, Latex, including 2 postscript figures, to appear in the Bull. astro. Soc. India, September 2001 issu

    Constraints on grain formation around carbon stars from laboratory studies of presolar graphite

    Get PDF
    We report the results of an investigation into the physical conditions in the mass outflows of asymptotic giant branch (AGB) carbon stars that are required for the formation of micron-sized presolar graphite grains, with and without previously formed internal crystals of titanium carbide (TiC). A lower mass limit of 1.1 M⊙ for stars capable of contributing grains to the solar nebula is derived. This mass limit, in conjunction with a mass-luminosity relation for carbon stars, identifies the region of the H-R diagram relevant to the production of presolar graphite. Detailed dynamical models of AGB outflows, along with constraints provided by kinetics and equilibrium thermodynamics, indicate that grain formation occurs at radii from 2.3 to 3.7 AU for AGB carbon stars in the 1.1-5 M⊙ range. This analysis also yields time intervals available for graphite growth that are on the order of a few years. By considering the luminosity variations of carbon stars, we show that grains formed during minima in the luminosity are likely to be evaporated subsequently, while those formed at luminosity maxima will survive. We calculate strict upper limits on grain sizes for graphite and TiC in spherically symmetric AGB outflows. Graphite grains can reach diameters in the observed micron size range (1-2 µm) only under ideal growth conditions (perfect sticking efficiency, no evaporation, no depletion of gas species contributing to grain growth), and then only in outflows from carbon stars with masses ≲ 2.5 M⊙. The same is true for TiC grains that are found within presolar graphite, which have mean diameters of 24 ± 14 nm. In general, the mass-loss rates that would be required to produce the observed grain sizes in spherically symmetric outflows are at least an order of magnitude larger than the maximum observed AGB carbon star mass-loss rates. These results, as well as pressure constraints derived from equilibrium thermodynamics, force us to conclude that presolar graphite and TiC must form in regions of enhanced density (clumps, jets) in AGB outflows having small angular scales. As shown in the companion paper by Croat et al., the enrichment of 12C in many AGB graphites, and the overabundances of the s-process elements Mo, Zr, and Ru in the carbides found within them, often greatly exceed the values observed astronomically in AGB outflows. These observations not only lend further support to the idea that the outflows are clumpy, but also imply that the outflowing matter is not well mixed in the circumstellar envelope out to the radii where grain condensation takes place

    Short-period intensity oscillations in the solar corona observed during the total solar eclipse of 26 february 1998

    Get PDF
    Encouraged by the detection of high-frequency, low-amplitude continuum intensity oscillations in the solar corona during the total solar eclipse of 1995, we designed and fabricated a six-channel photometer incorporating low-noise Hamamatsu R647 photomultipliers. Fast photometry at five different locations in the solar corona was performed at Don Bosco Mission, Venezuela during the total solar eclipse of 26 February 1998. Three interference filters with passbands of about 150Å and centered around 4700, 4900, and 5000Å were used. The photometric data were recorded at a rate of 20 Hz in three channels and 50 Hz in the remaining three channels. The power spectrum analysis of one of the channels that recorded appreciable counts indicates the existence of intensity oscillations in the frequency range 0.01-0.2 Hz. A least-squares analysis yields 90.1, 25.2, and 6.9 s periods for the three prominent components which have amplitudes in the range 0.5-3.5% of the coronal brightness. These periods and their amplitudes are similar to those detected in the coronal intensity oscillations during the 1995 eclipse

    IONS (ANURADHA): Ionization states of low energy cosmic rays

    Get PDF
    IONS (ANURADHA), the experimental payload designed specifically to determine the ionization states, flux, composition, energy spectra and arrival directions of low energy (10 to 100 MeV/amu) anomalous cosmic ray ions of helium to iron in near-Earth space, had a highly successful flight and operation Spacelab-3 mission. The experiment combines the accuracy of a highly sensitive CR-39 nuclear track detector with active components included in the payload to achieve the experimental objectives. Post-flight analysis of detector calibration pieces placed within the payload indicated no measurable changes in detector response due to its exposure in spacelab environment. Nuclear tracks produced by alpha-particles, oxygen group and Fe ions in low energy anomalous cosmic rays were identified. It is calculated that the main detector has recorded high quality events of about 10,000 alpha-particles and similar number of oxygen group and heavier ions of low energy cosmic rays

    Bounds on Dark Matter from the ``Atmospheric Neutrino Anomaly''

    Get PDF
    Bounds are derived on the cross section, flux and energy density of new particles that may be responsible for the atmospheric neutrino anomaly. 4.6×1045cm2<σ<2.4×1034cm24.6 \times 10^{-45} cm^2 < \sigma <2.4 \times 10^{-34} cm^2 Decay of primordial homogeneous dark matter can be excluded.Comment: 10 pages, TeX (revtex

    Design and tests of the hard X-ray polarimeter X-Calibur

    Get PDF
    X-ray polarimetry promises to give qualitatively new information about high-energy astrophysical sources, such as binary black hole systems, micro-quasars, active galactic nuclei, and gamma-ray bursts. We designed, built and tested a hard X-ray polarimeter X-Calibur to be used in the focal plane of the InFOCuS grazing incidence hard X-ray telescope. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 10-80 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation. X-Calibur achieves a high detection efficiency of order unity.Comment: 9 pages, 5 figures, conference proceedings: SPIE 2011 (San Diego

    CD imaging of gamma ray burster fields

    Get PDF
    Gamma Ray Bursts (GRBs) have been known for almost three decades. The nature of the objects producing these bursts is yet unknown and no counterparts have been identified in any other wavelength band so far except for GB970228 recently. In an attempt to identify the optical counterparts of GRBs we obtain deep CCD images of selected, strong GRB fields through broad band filters. From these images we expect to be able to identify any peculiar objects on the basis of photometric colours andlor variability. In this paper we present the preliminary results of the data obtained during our observing run in November 1996 at the UP State Observatory, Nainital
    corecore