49 research outputs found

    The Complete Genome Sequence of ‘Candidatus Liberibacter solanacearum’, the Bacterium Associated with Potato Zebra Chip Disease

    Get PDF
    Zebra Chip (ZC) is an emerging plant disease that causes aboveground decline of potato shoots and generally results in unusable tubers. This disease has led to multi-million dollar losses for growers in the central and western United States over the past decade and impacts the livelihood of potato farmers in Mexico and New Zealand. ZC is associated with ‘Candidatus Liberibacter solanacearum’, a fastidious alpha-proteobacterium that is transmitted by a phloem-feeding psyllid vector, Bactericera cockerelli Sulc. Research on this disease has been hampered by a lack of robust culture methods and paucity of genome sequence information for ‘Ca. L. solanacearum’. Here we present the sequence of the 1.26 Mbp metagenome of ‘Ca. L. solanacearum’, based on DNA isolated from potato psyllids. The coding inventory of the ‘Ca. L. solanacearum’ genome was analyzed and compared to related Rhizobiaceae to better understand ‘Ca. L. solanacearum’ physiology and identify potential targets to develop improved treatment strategies. This analysis revealed a number of unique transporters and pathways, all potentially contributing to ZC pathogenesis. Some of these factors may have been acquired through horizontal gene transfer. Taxonomically, ‘Ca. L. solanacearum’ is related to ‘Ca. L. asiaticus’, a suspected causative agent of citrus huanglongbing, yet many genome rearrangements and several gene gains/losses are evident when comparing these two Liberibacter. species. Relative to ‘Ca. L. asiaticus’, ‘Ca. L. solanacearum’ probably has reduced capacity for nucleic acid modification, increased amino acid and vitamin biosynthesis functionalities, and gained a high-affinity iron transport system characteristic of several pathogenic microbes

    Towards an Improved Taxonomy of \u3ci\u3eXanthomonas\u3c/i\u3e

    Get PDF
    Improvement of the taxonomy of the genus Xanthomonas and especially of Xanthomonas campestris, which is subdivided into more than 125 pathovars, is discussed. Recent contributions to the taxonomy of Xanthomonas are reviewed, and on the basis of these data and unpublished data from several laboratories, the usefulness of different phenotypic, chemotaxonomic, and genotypic techniques is discussed. The heterogeneity of several X. campestris pathovars has been demonstrated by sodium dodecyl sulfate electrophoresis of whole-cell proteins and fatty acid fingerprinting. The host selectivity of the pathovars is not correlated with their relationships as revealed by DNA-DNA hybridization experiments. In order to reveal the phylogenetic relationships among X. campestris pathovars and their relationships to other Xanthomonas species, it will be necessary to perform extensive DNA-DNA homology studies as an essential part of a polyphasic approach. At present, six DNA homology groups within X. campestris have been delineated. A systematic approach to improve the taxonomy of the genus Xanthomonas is proposed
    corecore