439 research outputs found

    Modeling and Maximum Likelihood Fitting of Gamma-Ray and Radio Light Curves of Millisecond Pulsars Detected with Fermi

    Get PDF
    Pulsed gamma rays have been detected with the Fermi Large Area Telescope (LAT) from more than 20 millisecond pulsars (MSPs), some of which were discovered in radio observations of bright, unassociated LAT sources. We have fit the radio and gamma-ray light curves of 19 LAT-detected MSPs in the context of geometric, outer-magnetospheric emission models assuming the retarded vacuum dipole magnetic field using a Markov chain Monte Carlo maximum likelihood technique. We find that, in many cases, the models are able to reproduce the observed light curves well and provide constraints on the viewing geometries that are in agreement with those from radio polarization measurements. Additionally, for some MSPs we constrain the altitudes of both the gamma-ray and radio emission regions. The best-fit magnetic inclination angles are found to cover a broader range than those of non-recycled gamma-ray pulsars.Comment: 4 pages, 3 figures, 2011 Fermi Symposium proceedings - eConf C110509 -- v2 corrects caption of Figure 1, v3 corrects missing fil

    Constraining Relativistic Bow Shock Properties in Rotation-Powered Millisecond Pulsar Binaries

    Get PDF
    Multiwavelength followup of unidentified Fermi sources has vastly expanded the number of known galactic-field "black widow" and "redback" millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R0R_0. We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R00.15R_0 \sim 0.15 -- 0.30.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R00.4R_0 \lesssim 0.4 while X-ray light curves suggest 0.1R00.30.1\lesssim R_0 \lesssim 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.Comment: Accepted to ApJ, 36 pages, 15 figures; comments welcom

    Cyclopropenium Salts as Cyclable, High‐Potential Catholytes in Nonaqueous Media

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136488/1/aenm201602027-sup-0001-S1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136488/2/aenm201602027.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136488/3/aenm201602027_am.pd
    corecore