
Syddansk Universitet

COMDES Development Toolset

Guo, Yu; Sierszecki, Krzysztof; Angelov, Christo K.

Published in:
Proc. of the 5th International Workshop on Formal Aspects of Component Software FACS'2008

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link to publication

Citation for pulished version (APA):
Guo, Y., Sierszecki, K., & Angelov, C. K. (2008). COMDES Development Toolset. In Proc. of the 5th
International Workshop on Formal Aspects of Component Software FACS'2008. (pp. 233-237). FACS.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 10. Jan. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Southern Denmark Research Output

https://core.ac.uk/display/50655387?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://findresearcher.sdu.dk/portal/en/publications/comdes-development-toolset(851c0d30-63ed-11dd-b1a1-000ea68e967b).html

FACS 2008

COMDES Development Toolset

Yu Guo 1 Krzysztof Sierszecki 2 Christo Angelov 3

Mads Clausen Institute
University of Southern Denmark

Soenderborg, Denmark

Abstract

This paper presents the COMDES Development Toolset, which supports component-based development of
embedded software in a model-driven fashion. The tool, which is built on the Eclipse platform, provides
facilities for the graphical specification of a COMDES application. Once the application is specified, the
application model is used as input to a transformation engine that generates the final configuration model
involving pre-defined component models that are retrieved from a component repository. This model is
finally used to generate source codes and executable, which is deployed in the target system.

Keywords: component-based design, model-driven development, metamodeling, Eclipse, tools

1 Introduction

Traditional methods used to develop embedded software are plagued by a number

of problems, e.g. language incompatibility between the application and IT domains,

and discontinuity gaps arising in the process of development, whereby the imple-

mentation is not always consistent with the specification.

The first problem can be solved by means of domain-specific modeling tech-

niques (languages), which bridge the application domains and the IT domain. The

COMDES framework [5] provides such a language for the embedded control sys-

tems domain. Model-driven software development [2][3] seems promising to solve

the second problem, since the implementation can be derived from, or generated

directly from the specification. However, the outlined approach requires adequate

tool support.

The COMDES Development Toolset is intended to give a solution of above prob-

lem via a modeling framework based on reusable components with robust, flexible

and extensible tool support. This paper provides a brief introduction to COMDES

and presents its software development toolset. The rest of the paper is structured as

1 Email: guo@mci.sdu.dk
2 Email: ksi@mci.sdu.dk
3 Email: angelov@mci.sdu.dk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:guo@mci.sdu.dk
mailto:ksi@mci.sdu.dk
mailto:angelov@mci.sdu.dk

Guo, Sierszecki and Angelov

follows: Section 2 presents the COMDES framework and its components. Section 3

deals with the architecture and implementation of the toolset. A summary is given

in the concluding section of the paper.

2 COMDES Framework

The COMDES framework provides a domain-specific language that enables model-

ing and assembling of concrete applications using prefabricated executable compo-

nents that are typical for the embedded control systems domain. System structure

is specified statically in terms of distributed embedded actors that communicate

with each other by exchanging labeled messages (signals), see Fig. 1a. Signal-based

communication provides for transparent interaction between actors, independent of

their allocation on network nodes. Actors (see Fig. 1b) are built from reconfig-

urable components – function blocks (FBs), and their structure is specified with FB

diagrams, see Fig. 1c.

Fig. 1. COMDES system architecture

A COMDES function block has three aspects: kind, type and instance.

COMDES defines five kinds of function block: basic, composite, signal driver, modal

and state machine. A basic FB is specified by subsets of inputs and outputs, as

well as a number of functions transforming input signals into output signals. A

subset of component instances may be softwired into a software circuit that can

be encapsulated into a composite FB, whereby constituent instances are executed

in a sequence that is determined by the flow of signals in the function block dia-

gram. Signal drivers are a special class of FB, which are wrappers providing an

interface to the system environment by executing functions that are hardware or

kernel-dependent. State machines are defined by a state chart, which is used to

determine the current execution state based on a set of Boolean inputs. State ma-

chines operate in conjunction with modal FBs. The latter contain a number of slots

(modes) encapsulating other components. Only one slot can be executed at a time,

which is determined by the state output of a state machine controlling the execution

of the modal FB.

Function block types can be reused across multiple projects (e.g. filter, PID,

etc.). They are instances of kind and can be instantiated when building the appli-

cation. Types are stored in a component repository and define the behavior of a

component. When developers are building the application, they load the component

types from a repository and instantiate them. Instances of the same type share the

2

Guo, Sierszecki and Angelov

same behavior but differ by the data structure. Typically, there are many instances

of a component of a given type.

Component types are created by skilled software engineers in the IT domain

using specific design patterns. In contrast, an application is configured by control

domain experts from already available components found in the repository. The

creation of the components and applications is both supported by the COMDES

development toolset.

3 The Architecture of the COMDES Toolset

Software systems are not static and are liable to significant changes, particularly

during the first phases of their lifecycle. By using the Model-Driven Software De-

velopment approach, models and codes are better integrated in the sense that the

changes of the application are effected through the models rather than modifying the

code directly. The COMDES framework employs patterns of C code for each kind

of component, which are derived from the corresponding component models. Thus,

it is possible to automatically convert models to code and ultimately – generate the

application.

The COMDES software development tools and their relationship are shown in

Fig. 2. These include Editor, Configurator and Generator implemented as Eclipse

plug-ins. The Compiler and Linker are hardware-specific being dependent on the

microcontroller used by the application. Means of accessing the Repository are

provided for all tools. Various models are exchanged among tools, and the final

output is the executable code for a specific platform.

The underlying idea is that models (gray boxes) are used in each step through-

out the entire development process; therefore, each step of the process is related

to some kind of model transformation, e.g. transformation from specification to

configuration model, and from configuration model to code.

The specification model of an application is created by developers using the

graphical Editor. The model specifies the application in terms of COMDES com-

ponents. This model is then processed by the Configurator to be extended with

the components that the application is dependent on. The configuration model

produced by the Configurator contains all information necessary for the Generator

to output glue codes. It is important to note that these are data structures repre-

senting component instances, which define the application configuration by gluing

components together. No executable code is generated. Instead, the glue codes are

compiled and linked with component types, stored in a repository as pre-compiled

objects, to form the final executable on the target. Currently, the COMDES compo-

nents are implemented in C that is also used as the ’de facto’ language of embedded

systems. Therefore, existing compilers and linkers provided by the GNU tool chains

can be employed to obtain the executable.

As discussed in the previous section, the component models are stored in the

repository as types. During the design stage, component instantiation is realized by

creating a reference from an instance to a type. In the process of specifying an ap-

plication, the developers create an instance object without any type. The instance

should be subsequently referred to a type, which has been loaded onto the devel-

3

Guo, Sierszecki and Angelov

Fig. 2. The architecture of the COMDES Development Toolset

opment environment from the repository through a repository model that stores

the links to all components. This approach of loading components from the reposi-

tory is flexible in that it can be implemented in any object-oriented environment. It

avoids the requirement for the tool implementation environment to support runtime

definition (construction) of classes [4].

The Editor generates specification models, which consist of components and

connections between them. The metamodel of the specification model comes from

a collection of concepts within the specific application domain. It is platform-

independent and does not provide knowledge about the real implementation. In

contrast, the configuration models are simple flat models used to generate code.

Therefore, the corresponding metamodel is an abstraction from the COMDES com-

ponent design pattern. It is platform-dependent since the C libraries are used for

the real implementation. It contains all information needed to generate the code.

The Configurator performs the transformation from the specification model to

configuration model [1]. The latter is used by the Generator to produce glue codes

with the support of templates. No manual coding is necessary, as the application-

specific logic has been defined as component types, which are pre-defined and stored

4

Guo, Sierszecki and Angelov

in the repository in the form of objects. The Linker links these objects to generate

executable code. Different component instances of the same type differ only in data,

whereas the routine that processes the data is the same for all instances of a given

type.

The toolset is implemented in Eclipse (http://eclipse.org), in order to reduce the

amount of manual work needed with conventional methods. The COMDES meta-

model is built in the Ecore language of the Eclipse Modeling Framework (EMF).

The graphical editing facility is provided by the Eclipse Graphical Modeling Frame-

work (GMF). Once the metamodel is built, the EMF can generate a set of Java

implementation classes conforming to the metamodel. These classes can be easily

used to parse the model, which allows for transformations between models. Alter-

natively, a model transformation language, like the Atlas Transformation Language

(ATL), can also be considered to perform the transformation task. Generation of

the glue codes is carried out by the CodeWorker (http://codeworker.free.fr) since it

provides an expressive scripting language to write templates that guide the genera-

tion process. Moreover, CodeWorker provides a scripting language adapted to the

description of any input format, in our case the XML Ecore files.

4 Conclusion

The paper has presented the COMDES Development Toolset, which has been specif-

ically designed to support embedded control system development. The latter is

based on the COMDES framework, which provides a component-based language

for control domain applications. Being a graphical language, COMDES facilitates

application development – the developer uses a specialized editing environment to

specify the application, making COMDES intuitive and easy to use, without the

need of extensive training.

An initial prototype of the toolset has been developed on the Eclipse platform. It

provides facilities for creating, editing, transformation and generation of application

and component models. The control application can be specified graphically and

the final executable code of the application can be created by generating and gluing

together instances of executable components stored in a component repository. The

development of an improved version of the toolset is currently in progress.

References

[1] Guo,Y, K. Sierszecki and C. Angelov, A (Re)Configuration Mechanism for Resource-Constrained
Embedded Systems, Proc. of the 1st IEEE International Workshop on Component-Based Design of
Resource-Constrained Systems, Turku, Finland, July/Aug 2008

[2] Object Management Group, MDA Guide Version 1.0.1, 12th June 2003

[3] Stahl,T., M. Völter, J. Bettin, A. Haase, S. Helsen, K. Czarnecki (Foreword by), B. von Stockfleth
(Translated by), “Model-Driven Software Development: Technology, Engineering, Management”, ISBN:
978-0-470-02570-3, Wiley, 2006

[4] Thramboulidis, K., G. Doukas, A. Frantzis, Towards an implementation model for FB-based
reconfigurable distributed control applications, Proc. of Seventh IEEE International Symposium on
Object-oriented Real-time Distributed Computing, Vienna, Austria 2004

[5] Xu, Ke, K. Sierszecki and C. Angelov, COMDES-II: A Component-Based Framework for Generative
Development of Distributed Real-Time Control Systems, Proc. of the 13th IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications, Daegu, Korea, 2007

5

	Introduction
	COMDES Framework
	The Architecture of the COMDES Toolset
	Conclusion
	References

