12 research outputs found

    Gender differences in muscle inflammation after eccentric exercise

    Full text link
    Unaccustomed exercise is followed by delayed-onset muscle soreness and morphological changes in skeletal muscle. Animal studies have demonstrated that women have an attenuated response to muscle damage. We studied the effect of eccentric exercise in untrained male (n = 8) and female (n = 8) subjects using a unilateral exercise design [exercise (Ex) and control (Con) legs]. Plasma granulocyte counts [before (Pre) and 48 h after exercise (+48h)] and creatine kinase activity [Pre, 24 h after exercise (+24h), +48h, and 6 days after exercise (+6d)] were determined before (Pre) and after (+24h, +48h, +6d) exercise, with biopsies taken from the vastus lateralis of each leg at +48h for determination of muscle damage and/or inflammation. Plasma granulocyte counts increased for men and decreased for women at +48h (P &lt; 0.05), and creatine kinase activity increased for both genders at +48h and +6d (P &lt; 0.01). There were significantly greater areas of both focal (P &lt; 0.001) and extensive (P &lt; 0.01) damage in the Ex vs. Con leg for both genders, which was assessed by using toluidine blue staining. The number of leukocyte common antigen-positive cells/mm2 tissue increased with exercise (P &lt; 0.05), and men tended to show more in their Ex vs. Con leg compared with women (P = 0.052). Men had a greater total (Ex and Con legs) number of bcl-2-positive cells/mm2 tissue vs. women (P &lt; 0.05). Atrophic fibers with homogeneous bcl-2-positive staining were seen only in men (n = 3). We conclude that muscle damage is similar between genders, yet the inflammatory response is attenuated in women vs. men. Finally, exercise may stimulate the expression of proteins involved in apoptosis in skeletal muscle.<br /

    Quantitative assessment of human muscle glycogen granules size and number in subcellular locations during recovery from prolonged exercise

    No full text
    Although data relating to muscle glycogen are interpreted as showing it is homogenous when quantified biochemically, it is actually in granules in specific subcellular locations. We hypothesized that postexercise restoration of muscle glycogen would occur initially by an increase in granule number followed by an increase in size, and also that restoration would differ in various subcellular locations. Five men performed prolonged exercise and had muscle biopsies taken at 0, 4, 24 and 48 h of recovery. We quantified granule number and size as well as the total volume of glycogen in the subsarcolemmal and the intra- and intermyofibrillar regions, using transmission electron microscopy. Muscle glycogen was reduced to 36 ± 8.3 mmol glucosyl units (kg dry weight)−1 at exhaustion, and was preferentially depleted and subsequently repleted in the intramyofibrillar space. The repletion rate was greatest in the first 4 h; this was associated with a 186% increase in number (P ≤ 0.05) and no change in particle size (P ≥ 0.05). From 4 h to 48 h, there was an increase in particle size (P ≤ 0.05) but not number (P ≥ 0.05). Net rate of G volume synthesis per unit area was 50% greater (P ≤ 0.05) in the subsarcolemmal than the myofibrillar compartment. Conversely, the net rate of single-particle volume synthesis was greater (P ≤ 0.05) in the myofibrillar than the subsarcolemmal compartment. Glycogen granules varied in size and number depending on location, and in all compartments resynthesis of glycogen was characterized initially by an increase in granule number and later by an increase in size
    corecore