612,282 research outputs found

    Survival of Fecal Contamination Indicator Organisms in Soil

    Get PDF
    Soils amended with human or animal waste may result in pathogen contamination of ground and surface water. Because temperature has been shown to affect pathogen survival, two laboratory studies were conducted to evaluate the impact of extremes in temperature on bacterial and viral pathogen indicator die-off in soil. A Captina silt loam was amended with broiler litter (0.1 g/g dry soil), septic tank effluent, or Escherichia coli (ATCC 13706) culture (both at 0.04 and 0.1 mL/g dry soil in the two respective studies), incubated at 5 and 35°C, and analyzed over time to determine the number of fecal coliform, E. coli, and coliphage remaining. Pathogen indicator die-off rate constants (k) for all indicator- temperature-treatment combinations were determined by first-order kinetics. For all three pathogen indicators, die-off was significantly more rapid at 35°C than at 5°C. In both studies, fecal coliform die-off rates were not different from E. coli die-off rates across each temperature-treatment combination. Levels of these bacterial indicators appeared in a ratio of 1:0.94 with 95% confidence intervals at 0.89 and 0.99 in the E. coli- and litter-amended soils. Die-off of the viral indicator was significantly slower than the die-off of the bacterial indicators at 5°C in litter-amended soil. Die-off of the bacterial indicator, E. coli, in soil amended with E. coli culture was not significantly different than die-off in soil amended with broiler litter at 5 or 35°C in the two studies. Because the higher incubation temperature increased die-off rates for all three indicators, it is expected that the potential for contamination of ground and surface water decreases with increasing temperature

    Cosmic ray feedback in the FIRE simulations: constraining cosmic ray propagation with GeV gamma ray emission

    Get PDF
    We present the implementation and the first results of cosmic ray (CR) feedback in the Feedback In Realistic Environments (FIRE) simulations. We investigate CR feedback in non-cosmological simulations of dwarf, sub-LL\star starburst, and LL\star galaxies with different propagation models, including advection, isotropic and anisotropic diffusion, and streaming along field lines with different transport coefficients. We simulate CR diffusion and streaming simultaneously in galaxies with high resolution, using a two moment method. We forward-model and compare to observations of γ\gamma-ray emission from nearby and starburst galaxies. We reproduce the γ\gamma-ray observations of dwarf and LL\star galaxies with constant isotropic diffusion coefficient κ3×1029cm2s1\kappa \sim 3\times 10^{29}\,{\rm cm^{2}\,s^{-1}}. Advection-only and streaming-only models produce order-of-magnitude too large γ\gamma-ray luminosities in dwarf and LL\star galaxies. We show that in models that match the γ\gamma-ray observations, most CRs escape low-gas-density galaxies (e.g.\ dwarfs) before significant collisional losses, while starburst galaxies are CR proton calorimeters. While adiabatic losses can be significant, they occur only after CRs escape galaxies, so they are only of secondary importance for γ\gamma-ray emissivities. Models where CRs are ``trapped'' in the star-forming disk have lower star formation efficiency, but these models are ruled out by γ\gamma-ray observations. For models with constant κ\kappa that match the γ\gamma-ray observations, CRs form extended halos with scale heights of several kpc to several tens of kpc.Comment: 31 pages, 26 figures, accepted for publication in MNRA

    Non classical velocity statistics in a turbulent atomic Bose Einstein condensate

    Full text link
    In a recent experiment Paoletti et al (Phys. Rev. Lett. 101, 154501, 2008) monitored the motion of tracer particles in turbulent superfluid helium and inferred that the velocity components do not obey the Gaussian statistics observed in ordinary turbulence. Motivated by their experiment, we create a small turbulent state in an atomic Bose-Einstein condensate, which enables us to compute directly the velocity field, and we find similar non-classical power-law tails. Our result thus suggests that non-Gaussian turbulent velocity statistics describe a fundamental property of quantum fluids. We also track the decay of the vortex tangle in the presence of the thermal cloud.Comment: 10 pages, 3 figure

    Mechanical design of NASA Ames Research Center vertical motion simulator

    Get PDF
    NASA has designed and is constructing a new flight simulator with large vertical travel. Several aspects of the mechanical design of this Vertical Motion Simulator (VMS) are discussed, including the multiple rack and pinion vertical drive, a pneumatic equilibration system, and the friction-damped rigid link catenaries used as cable supports

    Casimir energies with finite-width mirrors

    Full text link
    We use a functional approach to the Casimir effect in order to evaluate the exact vacuum energy for a real scalar field in d+1d+1 dimensions, in the presence of backgrounds that, in a particular limit, impose Dirichlet boundary conditions on one or two parallel surfaces. Outside of that limit, the background may be thought of as describing finite-width mirrors with frequency-dependent transmission and reflection coefficients. We provide new explicit results for the Casimir energy in some particular backgroundsComment: 18 pages, no figures. Version to appear in Phys. Rev.

    Balloon-borne radiometer measurement of Northern Hemisphere mid-latitude stratospheric HNO3 profiles spanning 12 years

    Get PDF
    Low-resolution atmospheric thermal emission spectra collected by balloon-borne radiometers over the time span of 1990–2002 are used to retrieve vertical profiles of HNO3, CFC-11 and CFC-12 volume mixing ratios between approximately 10 and 35 km altitude. All of the data analyzed have been collected from launches from a Northern Hemisphere mid-latitude site, during late summer, when stratospheric dynamic variability is at a minimum. The retrieval technique incorporates detailed forward modeling of the instrument and the radiative properties of the atmosphere, and obtains a best fit between modeled and measured spectra through a combination of onion-peeling and global optimization steps. The retrieved HNO3 profiles are consistent over the 12-year period, and are consistent with recent measurements by the Atmospheric Chemistry Experiment-Fourier transform spectrometer satellite instrument. This suggests that, to within the errors of the 1990 measurements, there has been no significant change in the HNO3 summer mid-latitude profile

    Dynamical Solution of the On-Line Minority Game

    Full text link
    We solve the dynamics of the on-line minority game, with general types of decision noise, using generating functional techniques a la De Dominicis and the temporal regularization procedure of Bedeaux et al. The result is a macroscopic dynamical theory in the form of closed equations for correlation- and response functions defined via an effective continuous-time single-trader process, which are exact in both the ergodic and in the non-ergodic regime of the minority game. Our solution also explains why, although one cannot formally truncate the Kramers-Moyal expansion of the process after the Fokker-Planck term, upon doing so one still finds the correct solution, that the previously proposed diffusion matrices for the Fokker-Planck term are incomplete, and how previously proposed approximations of the market volatility can be traced back to ergodicity assumptions.Comment: 25 pages LaTeX, no figure

    B^0 meson decays to ρ^0K^(*0), f_0K^(*0), and ρ^-K^(*+), including higher K^* resonances

    Get PDF
    We present branching fraction measurements for the decays B^0→ρ^0K^(*0), B^0→f_0K^(*0), and B^0→ρ^-K^(*+), where K^* is an S-wave (Kπ)_0^* or a K^*(892) meson; we also measure B^0→f_0K_2^*(1430)^0. For the K^*(892) channels, we report measurements of longitudinal polarization fractions (for ρ final states) and direct CP violation asymmetries. These results are obtained from a sample of (471.0±2.8)×10^6 BB̅ pairs collected with the BABAR detector at the PEP-II asymmetric-energy e^+e^- collider at the SLAC National Accelerator Laboratory. We observe ρ^0K^*(892)^0, ρ^0(Kπ)_0^(*0), f_0K^*(892)^0, and ρ^-K^*(892)^+ with greater than 5σ significance, including systematics. We report first evidence for f_0(Kπ)_0^(*0) and f_0K_2^*(1430)^0, and place an upper limit on ρ^-(Kπ)_0^(*+). Our results in the K^*(892) channels are consistent with no direct CP violation

    Measurement of the semileptonic branching fraction of the B_s meson

    Get PDF
    We report a measurement of the inclusive semileptonic branching fraction of the B_s meson using data collected with the BABAR detector in the center-of-mass energy region above the Υ(4S) resonance. We use the inclusive yield of ϕ mesons and the ϕ yield in association with a high-momentum lepton to perform a simultaneous measurement of the semileptonic branching fraction and the production rate of B_s mesons relative to all B mesons as a function of center-of-mass energy. The inclusive semileptonic branching fraction of the B_s meson is determined to be B(B_s→ℓνX)=9.5_(-2.0)^(+2.5)(stat)_(-1.9)^(+1.1)(syst)%, where ℓ indicates the average of e and μ
    corecore