6 research outputs found

    Microseismic Full Waveform Modeling in Anisotropic Media with Moment Tensor Implementation

    Get PDF
    Seismic anisotropy which is common in shale and fractured rocks will cause travel-time and amplitude discrepancy in different propagation directions. For microseismic monitoring which is often implemented in shale or fractured rocks, seismic anisotropy needs to be carefully accounted for in source location and mechanism determination. We have developed an efficient finite-difference full waveform modeling tool with an arbitrary moment tensor source. The modeling tool is suitable for simulating wave propagation in anisotropic media for microseismic monitoring. As both dislocation and non-double-couple source are often observed in microseismic monitoring, an arbitrary moment tensor source is implemented in our forward modeling tool. The increments of shear stress are equally distributed on the staggered grid to implement an accurate and symmetric moment tensor source. Our modeling tool provides an efficient way to obtain the Green’s function in anisotropic media, which is the key of anisotropic moment tensor inversion and source mechanism characterization in microseismic monitoring. In our research, wavefields in anisotropic media have been carefully simulated and analyzed in both surface array and downhole array. The variation characteristics of travel-time and amplitude of direct P- and S-wave in vertical transverse isotropic media and horizontal transverse isotropic media are distinct, thus providing a feasible way to distinguish and identify the anisotropic type of the subsurface. Analyzing the travel-times and amplitudes of the microseismic data is a feasible way to estimate the orientation and density of the induced cracks in hydraulic fracturing. Our anisotropic modeling tool can be used to generate and analyze microseismic full wavefield with full moment tensor source in anisotropic media, which can help promote the anisotropic interpretation and inversion of field data

    Cholinesterase Inhibition and Toxicokinetics in Immature and Adult Rats After Acute or Repeated Exposures to Chlorpyrifos or Chlorpyrifos–oxon

    No full text
    The effect of age or dose regimen on cholinesterase inhibition (ChEI) from chlorpyrifos (CPF) or CPF–oxon (CPFO) was studied in Crl:CD(SD) rats. Rats were exposed to CPF by gavage in corn oil, rat milk (pups), or in the diet (adults) or to CPFO by gavage in corn oil. Blood CPF/CPFO levels were measured. With acute exposure, ChEI NOELs were 2mg/kg CPF for brain and 0.5mg/kg CPF for red blood cells (RBCs) in both age groups. In pups, ChEI and blood CPF levels were similar using either milk or corn oil vehicles. Compared to gavage, adults given dietary CPF (12h exposure) had greater RBC ChEI, but lower brain ChEI at corresponding CPF doses, indicating an effect of dose rate. With repeated CPF exposures, ChEI NOELs were the same across ages (0.5 and 0.1mg/kg/day for brain and RBCs, respectively). With CPFO dosing, the ChEI NOELs were 0.1mg/kg (acute) and 0.01mg/kg/day (repeated doses) for RBCs with no ChEI in brain at CPFO doses up to 0.5 (pup) or 10mg/kg (adult) for acute dosing or 0.5mg/kg/day for both ages with repeat dosing. Thus, there were no age-dependent differences in CPF ChEI via acute or repeated exposures. Pups had less ChEI than adults at comparable blood CPF levels. Oral CPFO resulted in substantial RBC ChEI, but no brain ChEI, indicating no CPFO systemic bioavailability to peripheral tissues

    Pharmacological BACE1 and BACE2 inhibition induces hair depigmentation by inhibiting PMEL17 processing in mice

    Get PDF
    Melanocytes of the hair follicle produce melanin and are essential in determining the differences in hair color. Pigment cell-specific MELanocyte Protein (PMEL17) plays a crucial role in melanogenesis. One of the critical steps is the amyloid-like functional oligomerization of PMEL17. Beta Site APP Cleaving Enzyme-2 (BACE2) and Îł-secretase have been shown to be key players in generating the proteolytic fragments of PMEL17. The ÎČ-secretase (BACE1) is responsible for the generation of amyloid-ÎČ (AÎČ) fragments in the brain and is therefore proposed as a therapeutic target for Alzheimer's disease (AD). Currently BACE1 inhibitors, most of which lack selectivity over BACE2, have demonstrated efficacious reduction of amyloid-ÎČ peptides in animals and the CSF of humans. BACE2 knock-out mice have a deficiency in PMEL17 proteolytic processing leading to impaired melanin storage and hair depigmentation. Here, we confirm BACE2-mediated inhibition of PMEL17 proteolytic processing in vitro in mouse and human melanocytes. Furthermore, we show that wildtype as well as bace2(+/-) and bace2(-/-) mice treated with a potent dual BACE1/BACE2 inhibitor NB-360 display dose-dependent appearance of irreversibly depigmented hair. Retinal pigmented epithelium showed no morphological changes. Our data demonstrates that BACE2 as well as additional BACE1 inhibition affects melanosome maturation and induces hair depigmentation in mice
    corecore