75 research outputs found

    RNOP-09: Pegylated liposomal doxorubicine and prolonged temozolomide in addition to radiotherapy in newly diagnosed glioblastoma - a phase II study

    Get PDF
    BACKGROUND: Although Temozolomide is effective against glioblastoma, the prognosis remains dismal and new regimens with synergistic activity are sought for. METHODS: In this phase-I/II trial, pegylated liposomal doxorubicin (Caelyx, PEG-Dox) and prolonged administration of Temozolomide in addition to radiotherapy was investigated in 63 patients with newly diagnosed glioblastoma. In phase-I, PEG-Dox was administered in a 3-by-3 dose-escalation regimen. In phase-II, 20 mg/m2 PEG-Dox was given once prior to radiotherapy and on days 1 and 15 of each 28-day cycle starting 4 weeks after radiotherapy. Temozolomide was given in a dose of 75 mg/m2 daily during radiotherapy (60 Gy) and 150-200 mg/m2 on days 1-5 of each 28-day cycle for 12 cycles or until disease progression. RESULTS: The toxicity of the combination of PEG-Dox, prolonged administration of Temozolomide, and radiotherapy was tolerable. The progression free survival after 12 months (PFS-12) was 30.2%, the median overall survival was 17.6 months in all patients including the ones from Phase-I. None of the endpoints differed significantly from the EORTC26981/NCIC-CE.3 data in a post-hoc statistical comparison. CONCLUSION: Together, the investigated combination is tolerable and feasible. Neither the addition of PEG-Dox nor the prolonged administration of Temozolomide resulted in a meaningful improvement of the patient's outcome as compared to the EORTC26981/NCIC-CE.3 data

    Development and external validation of a clinical prediction model for functional impairment after intracranial tumor surgery

    Get PDF
    OBJECTIVE Decision-making for intracranial tumor surgery requires balancing the oncological benefit against the risk for resection-related impairment. Risk estimates are commonly based on subjective experience and generalized num-bers from the literature, but even experienced surgeons overestimate functional outcome after surgery. Today, there is no reliable and objective way to preoperatively predict an individual patient's risk of experiencing any functional impair-ment. METHODS The authors developed a prediction model for functional impairment at 3 to 6 months after microsurgical resection, defined as a decrease in Karnofsky Performance Status of >= 10 points. Two prospective registries in Swit- zerland and Italy were used for development. External validation was performed in 7 cohorts from Sweden, Norway, Germany, Austria, and the Netherlands. Age, sex, prior surgery, tumor histology and maximum diameter, expected major brain vessel or cranial nerve manipulation, resection in eloquent areas and the posterior fossa, and surgical approach were recorded. Discrimination and calibration metrics were evaluated. RESULTS In the development (2437 patients, 48.2% male; mean age +/- SD: 55 +/- 15 years) and external validation (2427 patients, 42.4% male; mean age +/- SD: 58 +/- 13 years) cohorts, functional impairment rates were 21.5% and 28.5%, respectively. In the development cohort, area under the curve (AUC) values of 0.72 (95% CI 0.69-0.74) were observed. In the pooled external validation cohort, the AUC was 0.72 (95% CI 0.69-0.74), confirming generalizability. Calibration plots indicated fair calibration in both cohorts. The tool has been incorporated into a web-based application available at https://neurosurgery.shinyapps.io/impairment/. CONCLUSIONS Functional impairment after intracranial tumor surgery remains extraordinarily difficult to predict, al- though machine learning can help quantify risk. This externally validated prediction tool can serve as the basis for case by-case discussions and risk-to-benefit estimation of surgical treatment in the individual patient.Scientific Assessment and Innovation in Neurosurgical Treatment Strategie

    Methadon induzierter Zelltod in Glioblastom Zellen verglichen mit normalen Astrozyten

    No full text

    L,D-methadone in the treatment of glioblastoma - in vitro results

    No full text

    Spinal cord stimulation: Complications requiring re-operations

    No full text

    Chirurgische Komplikationen nach Kraniektomie

    No full text
    corecore