513 research outputs found

    ALMA observations of the supergiant B[e] star Wd1-9

    Get PDF
    Mass-loss in massive stars plays a critical role in their evolution, although the precise mechanism(s) responsible – radiatively driven winds, impulsive ejection and/or binary interaction – remain uncertain. In this Letter, we present Atacama Large Millimetre/Submillimeter Array line and continuum observations of the supergiant B[e] star Wd1-9, a massive post-main-sequence object located within the starburst cluster Westerlund 1 (Wd1). We find it to be one of the brightest stellar point sources in the sky at millimetre wavelengths, with (serendipitously identified) emission in the H41α radio recombination line. We attribute these properties to a low velocity (∼100 km s-1 ) ionized wind, with an extreme mass-loss rate ≳6.4 × 105(d/5 kpc)1.5 Mȯyr-1. External to this is an extended aspherical ejection nebula indicative of a prior phase of significant mass-loss. Taken together, the millimetre properties of Wd1-9 show a remarkable similarity to those of the highly luminous stellar source MWC349A. We conclude that these objects are interacting binaries evolving away from the main sequence and undergoing rapid case-A mass transfer. As such they – and by extension the wider class of supergiant B[e] stars – may provide a unique window into the physics of a process that shapes the life-cycle of ∼70 per cent of massive stars found in binary systems

    Exploiting indigenous knowledge of subsistence farmers’ for the management and conservation of Enset (Ensete ventricosum (Welw.) Cheesman) (musaceae family) diversity on-farm

    Get PDF
    Enset (Ensete ventricosum (Welw.) Cheesman) belongs to the order sctaminae, the family musaceae. The Musaceae family is subdivided into the genera Musa and Ensete. Enset is an important staple crop for about 20 million people in the country. Recent publications on enset ethnobotany are insignificant when compared to the diverse ethnolingustic communities in the country. Hence, this paper try to identify and document wealth of indigenous knowledge associated with the distribution, diversity, and management of enset in the country. Methods: The study was conducted in eight ethnic groups in the Southern Nations, Nationalities and Peoples’ Regional State. In order to identify and document wealth of indigenous knowledge, the data was collected mainly through individual interviews and direct on-farm participatory monitoring and observation with 320 farm households, key informant interviews. Relevant secondary data, literature and inter-personal data were collected from unpublished progress report from National Enset Research Project, elderly people and senior experts. Results: Enset-based farming system is one of a major agricultural system in Ethiopia that serves as a backbone for at least ¼ of country’s population. Farmers used three morphological characters, two growth attributes, disease resistance and five use values traits in folk classification and characterization of enset. A total of 312 folk landraces have been identified. The number of landraces cultivated on individual farms ranged from one to twenty eight (mean of 8.08 ± 0.93). All ethnic groups in the study area use five use categories in order of importance: kocho yield and quality, bulla quality, amicho use, fiber quality and medicinal/ritual value. Of the 312 landraces 245 landraces having more than two use types. Management and maintenance of on-farm enset diversity is influenced by systematic propagation of the landraces, exchange of planting material and selective pressure. Conclusion: It can be concluded that the existing farmers’ knowledge on naming, classification and diversity should be complemented with maintenance of the creative dynamics of traditional knowledge and transmission of the knowledge are crucial for constructing sustainable management

    The 2.35 year itch of Cyg OB2 #9. II. Radio monitoring

    Full text link
    Cyg OB2 #9 is one of a small set of non-thermal radio emitting massive O-star binaries. The non-thermal radiation is due to synchrotron emission in the colliding-wind region. Cyg OB2 #9 was only recently discovered to be a binary system and a multi-wavelength campaign was organized to study its 2011 periastron passage. We report here on the results of the radio observations obtained in this monitoring campaign. We used the Expanded Very Large Array (EVLA) radio interferometer to obtain 6 and 20 cm continuum fluxes. The observed radio light curve shows a steep drop in flux sometime before periastron. The fluxes drop to a level that is comparable to the expected free-free emission from the stellar winds, suggesting that the non-thermal emitting region is completely hidden at that time. After periastron passage, the fluxes slowly increase. We introduce a simple model to solve the radiative transfer in the stellar winds and the colliding-wind region, and thus determine the expected behaviour of the radio light curve. From the asymmetry of the light curve, we show that the primary has the stronger wind. This is somewhat unexpected if we use the astrophysical parameters based on theoretical calibrations. But it becomes entirely feasible if we take into account that a given spectral type - luminosity class combination covers a range of astrophysical parameters. The colliding-wind region also contributes to the free-free emission, which can help to explain the high values of the spectral index seen after periastron passage. Combining our data with older Very Large Array (VLA) data allows us to derive a period P = 860.0 +- 3.7 days for this system. With this period, we update the orbital parameters that were derived in the first paper of this series.Comment: 10 pages, 4 figures, accepted for publication in A&

    Targets for the Treatment of Breast Cancer

    Get PDF
    The completion of the human genome sequence provides unique opportunities to identify new molecular targets for a variety of diseased conditions, especially for neoplastic diseases. Breast cancer is an ideal disease for the implementation of the recently developed, sophisticated genomic technologies, which permit the study of expression of many genes or proteins simultaneously, an approach known as molecular profiling. This approach is considered a major step forward in the development of new drugs that are more effective and less toxic than the current generation of antitumor agents. In this paper, we briefly review the current and future genomics technologies, such as DNA microarrays and proteomics techniques, and their use in the identification of new molecular targets for the treatment of breast cancer. We also discuss the challenge associated with the development of bioinformatics tools to analyze the massive number of data points generated by these technologies. Proof of principle is now emerging, demonstrating that selective agents against abnormal or mutated gene products can indeed be useful in the treatment of cancer. However, despite heavy investment in genomics research by the pharmaceutical industry, the full impact of genomics on drug discovery has yet to be fully demonstrated

    Variable millimetre radiation from the colliding-wind binary Cygnus OB2 #8A

    Get PDF
    Context. Massive binaries have stellar winds that collide. In the colliding-wind region, various physically interesting processes occur, leading to enhanced X-ray emission, non-thermal radio emission, as well as non-thermal X-rays and gamma-rays. Non-thermal radio emission (due to synchrotron radiation) has so far been observed at centimetre wavelengths. At millimetre wavelengths, the stellar winds and the colliding-wind region emit more thermal free-free radiation, and it is expected that any non-thermal contribution will be difficult or impossible to detect. Aims. We aim to determine if the material in the colliding-wind region contributes substantially to the observed millimetre fluxes of a colliding-wind binary. We also try to distinguish the synchrotron emission from the free-free emission. Methods. We monitored the massive binary Cyg OB2 #8A at 3 mm with the NOrthern Extended Millimeter Array (NOEMA) interferometer of the Institut de Radioastronomie Millimétrique (IRAM). The data were collected in 14 separate observing runs (in 2014 and 2016), and provide good coverage of the orbital period. Results. The observed millimetre fluxes range between 1.1 and 2.3 mJy, and show phase-locked variability, clearly indicating that a large part of the emission is due to the colliding-wind region. A simple synchrotron model gives fluxes with the correct order of magnitude, but with a maximum that is phase-shifted with respect to the observations. Qualitatively this phase shift can be explained by our neglect of orbital motion on the shape of the colliding-wind region. A model using only free-free emission results in only a slightly worse explanation of the observations. Additionally, on the map of our observations we also detect the O6.5 III star Cyg OB2 #8B, for which we determine a 3 mm flux of 0.21 ± 0.033 mJy. Conclusions. The question of whether synchrotron radiation or free-free emission dominates the millimetre fluxes of Cyg OB2 #8A remains open. More detailed modelling of this system, based on solving the hydrodynamical equations, is required to give a definite answer

    Traditional enset [Ensete ventricosum (Welw.) Cheesman] sucker propagation methods and opportunities for crop improvement

    Get PDF

    Modular Air-Coupled Ultrasonic Multichannel System for Inline NDT

    Get PDF
    AbstractIn many production processes it is important to detect in a very early stage basic errors in the fabricatedmaterial. If the errors are not visible from the exterior, ultrasonic inspection is a convenient technique,at least if the nature of the error influences the characteristics of sound passing through the material.Examples are local density variations in non-wovens, delaminations in composites, bad bondings inlaminates, inclusions, cracks or other artefacts in plastic or metal plates, etc. There are two major,difficult requirements imposed by industry to the used detection technique: the sensors shouldn’t makephysical contact with the material and the speed of testing must be sufficiently high to enable testingin-line. The former requirement can be met by employing an air-coupled ultrasonic approach, the latterby using a multichannel system.We propose a modular air-coupled ultrasonic multichannel system.Each multichannel module contains12 air-coupled transducers and exists in a transmitter and a receiver version. The desired scan width isobtained by connecting several modules to each other. During the scanning all transducers are spatially fixed while the material is moving forward. This way, speeds up to 1m/s are possible, irrespective ofthe width of the material. To that purpose a FPGA based platform with parallel processing of largenumbers of data streams is implemented in the modules. This allows the implementation of all kind ofprocedures, going from point measurements to more sophisticated techniques.In spite of all measurements being performed in ambient air, the ultrasonic frequency is rather high(1MHz), but lower frequencies are possible as well. The most obvious set-up of the modules is a through-transmission configuration. However the system can also be used in a pitch-catch configuration which isvery suitable for one-sided testing of thick materials. An examples established in the laboratory is shownto illustrate the performance

    Dietary diversity associated with different enset [Ensete ventricosum (Welw.) Cheesman]-based production systems in Ethiopia

    Get PDF
    corecore