12 research outputs found
Human B cells secrete migration inhibition factor (MIF) and present a naturally processed MIF peptide on HLA-DRB1*0405 by a FXXL motif
A better knowledge of peptide structures interacting with major histocompatibility complex (MHC) molecules is of great interest for better understanding of the molecular basis of immune recognition. We have isolated naturally processed peptides from a continuously growing antigen-presenting Epstein–Barr virus-transformed human B-cell line. HLA-DR complexes were purified by specific affinity chromatography and complexed peptides were released by acid treatment. The isolated peptides were separated by reversed phase chromatography and fractions were analysed by Edman degradation at picomolar ranges. From 30 fractions that were examined seven peptides bound to the HLA-DRB1*0405 and two peptides from the human leucocyte antigen (HLA) class II associated invariant chain bound to HLA-DRB1*1302. In addition, a N-terminal β-chain peptide of the 0405 allele was identified. Evaluation of amino acid sequences revealed a refined FXXL motif for the 0405 allele, in which F (phenylalanine) stands for any aromatic amino acid and L (leucine) can be exchanged by either I (isoleucine) or V (valine). In total, three fractions contained a peptide derived from the human migration inhibition factor (MIF), a pro-inflammatory cytokine that is normally produced by activated T lymphocytes and monocytes/macrophages. Indeed, cytokine analysis revealed high amounts of MIF secreted by the B-cell line, confirming that MHC class II expressing cells can present any intrinsic peptide that contains the distinct motif for HLA-binding. For MIF, the amino acid sequence Y36IAV39 represents the required binding motif for HLA-DRB1*0405. Nevertheless, it is the first time that cytokine fragments were found to bind to HLA molecules on human B cells
Consumption of hypoallergenic flour prevents gluten-induced airway inflammation in Brown Norway rats.
Brown Norway rats were immunized with gluten, and then fed a diet containing hypoallergenic fluor or an amino acid mixture. The rats were then made to inhale a solubilized gluten to induce gluten-specific bronchial asthma. The antibody levels in the serum of rats were measured by ELISA, and cell counts were done on cytospin preparations of bronchoalveolar lavage fluid. Body weight was decreased after allergen challenge in rats fed the amino acid mixture but not in rats fed the hypoallergenic flour. Antibody levels in the serum were significantly lower in rats fed hypoallergenic flour than in those fed the amino acid mixture. Differential cell counts in the bronchoalveolar lavage fluid showed that the numbers of eosinophils, lymphocytes, and neutrophils were significantly lower in rats fed the hypoallergenic flour than in those fed the amino acid mixture. These results suggest that hypoallergenic flour actively suppresses the allergic reactions, probably by inducing oral tolerance
Optimized polymer-based glucose release in microtiter plates for small-scale E. coli fed-batch cultivations
Background: Small-scale cultivation vessels, which allow fed-batch operation mode, become more and more important for fast and reliable early process development. Recently, the polymer-based feeding system was introduced to allow fed-batch conditions in microtiter plates. Maximum glucose release rates of 0.35 mg/h per well (48-well-plate) at 37 °C can be achieved with these plates, depending on the media properties. The fed-batch cultivation of fluorescent protein-expressing E. coli at oxygen transfer rate levels of 5 mmol/L/h proved to be superior compared to simple batch cultivations. However, literature suggests that higher glucose release rates than achieved with the currently available fed-batch microtiter plate are beneficial, especially for fast-growing microorganisms. During the fed-batch phase of the cultivation, a resulting oxygen transfer rate level of 28 mmol/L/h should be achieved. Results: Customization of the polymer matrix enabled a considerable increase in the glucose release rate of more than 250% to up to 0.90 mg/h per well. Therefore, the molecular weight of the prepolymer and the addition of a hydrophilic PDMS-PEG copolymer allowed for the individual adjustment of a targeted glucose release rate. The newly developed polymer matrix was additionally invariant to medium properties like the osmotic concentration or the pH-value. The glucose release rate of the optimized matrix was constant in various synthetic and complex media. Fed-batch cultivations of E. coli in microtiter plates with the optimized matrix revealed elevated oxygen transfer rates during the fed-batch phase of approximately 28 mmol/L/h. However, these increased glucose release rates resulted in a prolonged initial batch phase and oxygen limitations. The newly developed polymer-based feeding system provides options to manufacture individual feed rates in a range from 0.24-0.90 mg/h per well. Conclusions: The optimized polymer-based fed-batch microtiter plate allows higher reproducibility of fed-batch experiments since cultivation media properties have almost no influence on the release rate. The adjustment of individual feeding rates in a wide range supports the early process development for slow, average and fast-growing microorganisms in microtiter plates. The study underlines the importance of a detailed understanding of the metabolic behavior (through online monitoring techniques) to identify optimal feed rates. © 2020 The Author(s)