1,449 research outputs found
Electroweak and Flavour Structure of a Warped Extra Dimension with Custodial Protection
We present the electroweak and flavour structure of a model with a warped
extra dimension and the bulk gauge group SU(3) x SU(2)_L x SU(2)_R x P_LR x
U(1)_X. The presence of SU(2)_R implies an unbroken custodial symmetry in the
Higgs system allowing to eliminate large contributions to the T parameter,
whereas the P_LR symmetry and the enlarged fermion representations provide a
custodial symmetry for flavour diagonal and flavour changing couplings of the
SM Z boson to left-handed down-type quarks. We diagonalise analytically the
mass matrices of charged and neutral gauge bosons including the first KK modes.
We present the mass matrices for quarks including heavy KK modes and discuss
the neutral and charged currents involving light and heavy fields. We give the
corresponding complete set of Feynman rules in the unitary gauge.Comment: 74 pages, 2 figures. clarifying comments and references added,
version to be published in JHE
Rare K and B Decays in a Warped Extra Dimension with Custodial Protection
We present a complete study of rare K and B meson decays in a warped extra
dimensional model with a custodial protection of (both diagonal and
non-diagonal) Z d_L^i \bar d_L^j couplings, including K^+ -> pi^+ nu anti-nu,
K_L -> pi^0 nu anti-nu, K_L -> pi^0 l^+ l^-, K_L -> mu^+ mu^-, B_{s,d} -> mu^+
mu^-, B -> K nu anti-nu, B -> K^* nu anti-nu and B -> X_{s,d} nu anti-nu. In
this model in addition to Standard Model one loop contributions these processes
receive tree level contributions from the Z boson and the new heavy electroweak
gauge bosons. We analyse all these contributions that turn out to be dominated
by tree level Z boson exchanges governed by right-handed couplings to down-type
quarks. Imposing all existing constraints from Delta F=2 transitions analysed
by us recently and fitting all quark masses and CKM mixing parameters we find
that a number of branching ratios for rare K decays can differ significantly
from the SM predictions, while the corresponding effects in rare B decays are
modest, dominantly due to the custodial protection being more effective in B
decays than in K decays. In order to reduce the parameter dependence we study
correlations between various observables within the K system, within the B
system and in particular between K and B systems, and also between Delta F=2
and Delta F=1 observables. These correlations allow for a clear distinction
between this new physics scenario and models with minimal flavour violation or
the Littlest Higgs Model with T-parity, and could give an opportunity to future
experiments to confirm or rule out the model. We show how our results would
change if the custodial protection of Z d_L^i bar d^j_L couplings was absent.
In the case of rare B decays the modifications are spectacular.Comment: 50 pages, 17 figures. v2: minor clarifying comments and references
added. v3: few clarifying comments added, matches published versio
Minimal Flavour Violation and Beyond
Starting from the effective-theory framework for Minimal Flavour Violation,
we give a systematic definition of next-to-minimal (quark) flavour violation in
terms of a set of spurion fields exhibiting a particular hierarchy with respect
to a small (Wolfenstein-like) parameter. A few illustrative examples and their
consequences for charged and neutral decays with different quark chiralities
are worked out in some detail. Our framework can be used as a model-independent
classification scheme for the parameterization of flavour structure from
physics beyond the Standard Model.Comment: 17 pages, no figures, phenomenological discussion extended,
references adde
Indirect tests of the Randall-Sundrum model
I present phenomenological implications of the Randall-Sundrum model for
indirect searches, specifically a selection of flavor observables and
Higgs-related collider searches. I review the interplay of constraints from CP
violation in flavor physics, possible effects in rare decays, and
model-specific protection mechanisms. Deviations in the Higgs couplings to
fermions and, at one-loop, to gluons are unexpectedly strong and lead to strong
modifications in Higgs searches.Comment: 8 pages, 6 figures; Talk given at Discrete '10: Symposium on
Prospects in the Physics of Discrete Symmetries, Rome, Italy, 6-11 Dec 201
Photon-induced production of the mirror quarks from the model at the
The photon-induced processes at the provide clean experimental
conditions due to absence of the proton remnants, which might produce
complementary and interesting results for tests of the standard model and for
searching of new physics. In the context of the littlest model with
T-parity, we consider the photon-induced production of the mirror quarks at the
. The cross sections for various production channels are calculated and a
simply phenomenology analysis is performed by assuming leptonic decays.Comment: 20 pages, 10 figure
Fault diagnosis of downhole drilling incidents using adaptive observers and statistical change detection
Downhole abnormal incidents during oil and gas drilling cause costly delays, and may also potentially lead to dangerous scenarios. Different incidents will cause changes to different parts of the physics of the process. Estimating the changes in physical parameters, and correlating these with changes expected from various defects, can be used to diagnose faults while in development. This paper shows how estimated friction parameters and flow rates can be used to detect and isolate the type of incident, as well as isolating the position of a defect. Estimates are shown to be subjected to non-Gaussian, -distributed noise, and a dedicated multivariate statistical change detection approach is used that detects and isolates faults by detecting simultaneous changes in estimated parameters and flow rates. The properties of the multivariate diagnosis method are analyzed, and it is shown how detection and false alarm probabilities are assessed and optimized using data-based learning to obtain thresholds for hypothesis testing. Data from a 1400 m horizontal flow loop is used to test the method, and successful diagnosis of the incidents drillstring washout (pipe leakage), lost circulation, gas influx, and drill bit nozzle plugging are demonstrated
The Impact of a 4th Generation on Mixing and CP Violation in the Charm System
We study D0-D0 mixing in the presence of a fourth generation of quarks. In
particular, we calculate the size of the allowed CP violation which is found at
the observable level well beyond anything possible with CKM dynamics. We
calculate the semileptonic asymmetry a_SL and the mixing induced CP asymmetry
eta_fS_f which are correlated with each other. We also investigate the
correlation of eta_fS_f with a number of prominent observables in other mesonic
systems like epsilon'/epsilon, Br(K_L -> pi0 nu nu), Br(K+ -> pi+ nu nu),
Br(B_s ->mu+ mu-), Br(B_d -> mu+ mu-) and finally S_psi phi in the B_s system.
We identify a clear pattern of flavour and CP violation predicted by the SM4
model: While simultaneous large 4G effects in the K and D systems are possible,
accompanying large NP effects in the B_d system are disfavoured. However this
behaviour is not as pronounced as found for the LHT and RSc models. In contrast
to this, sizeable CP violating effects in the B_s system are possible unless
extreme effects in eta_fS_f are found, and Br(B_s ->mu+ mu-) can be strongly
enhanced regardless of the situation in the D system. We find that, on the
other hand, S_psi phi > 0.2 combined with the measured epsilon'/epsilon
significantly diminishes 4G effects within the D system.Comment: 22 pages, 23 figures, v2 (references added
On CP Asymmetries in Two-, Three- and Four-Body D Decays
Indirect and direct CP violations have been established in K_L and B_d
decays. They have been found in two-body decay channels -- with the exception
of K_L to pi^+ pi^- e^+ e^- transitions. Evidence for direct CP asymmetry has
just appeared in LHCb data on A_{CP}(D^0 to K^+ K^-) - A_{CP}(D^0 to pi^+ pi^-)
with 3.5 sigma significance. Manifestations of New Dynamics (ND) can appear in
CP asymmetries just below experimental bounds. We discuss D^{\pm}_{(s)},
D^0/\bar D^0 and D_L/D_S transitions to 2-, 3- and 4-body final states with a
comment on predictions for inclusive vs. exclusive CP asymmetries. In
particular we discuss T asymmetries in D to h_1 h_2 l^+ l^- in analogy with K_L
to pi^+ pi^- e^+ e^- transitions due to interference between M1, internal
bremsstrahlung and possible E1 amplitudes. Such an effect depends on the
strength of CP violation originating from the ND -- as discussed here for
Little Higgs Models with T parity and non-minimal Higgs sectors -- but also in
the interferences between these amplitudes even in the Standard Model (SM).
More general lessons can be learnt for T asymmetries in non-leptonic D decays
like D to h_1h_2 h_3 h_4. Such manifestations of ND can be tested at LHCb and
other Super-Flavour Factories like the projects at KEK near Tokyo and at Tor
Vergata/Frascati near Rome.Comment: 27 pages, 6 figures. Revised with current results from LHCb and HFAG
and further interpretation
Drillstring Washout Diagnosis Using Friction Estimation and Statistical Change Detection
In oil and gas drilling, corrosion or tensile stress can give small holes in the drillstring, which can cause leakage and prevent sufficient flow of drilling fluid. If such \emph{washout} remains undetected and develops, the consequence can be a complete twist-off of the drillstring.
Aiming at early washout diagnosis, this paper employs an adaptive observer to estimate friction parameters in the nonlinear process. Non-Gaussian noise is a nuisance in the parameter estimates, and dedicated generalized likelihood tests are developed to make efficient washout detection with the multivariate -distribution encountered in data. Change detection methods are developed using logged sensor data from a horizontal 1400 m managed pressure drilling test rig. Detection scheme design is conducted using probabilities for false alarm and detection to determine thresholds in hypothesis tests. A multivariate approach is demonstrated to have superior diagnostic properties and is able to diagnose a washout at very low levels. The paper demonstrates the feasibility of fault diagnosis technology in oil and gas drilling
Optimised configuration of sensors for fault tolerant control of an electro-magnetic suspension system
For any given system the number and location of sensors can affect the closed-loop performance as well as the reliability of the system. Hence, one problem in control system design is the selection of the sensors in some optimum sense that considers both the system performance and reliability. Although some methods have been proposed that deal with some of the aforementioned aspects, in this work, a design framework dealing with both control and reliability aspects is presented. The proposed framework is able to identify the best sensor set for which optimum performance is achieved even under single or multiple sensor failures with minimum sensor redundancy. The proposed systematic framework combines linear quadratic Gaussian control, fault tolerant control and multiobjective optimisation. The efficacy of the proposed framework is shown via appropriate simulations on an electro-magnetic suspension system
- …
