36 research outputs found

    Public health impact and return on investment of Belgium’s pediatric immunization program

    Get PDF
    ObjectiveWe evaluated the public health impact and return on investment of Belgium’s pediatric immunization program (PIP) from both healthcare-sector and societal perspectives.MethodsWe developed a decision analytic model for 6 vaccines routinely administered in Belgium for children aged 0–10 years: DTaP-IPV-HepB-Hib, DTaP-IPV, MMR, PCV, rotavirus, and meningococcal type C. We used separate decision trees to model each of the 11 vaccine-preventable pathogens: diphtheria, tetanus, pertussis, poliomyelitis, Haemophilus influenzae type b, measles, mumps, rubella, Streptococcus pneumoniae, rotavirus, and meningococcal type C; hepatitis B was excluded because of surveillance limitations. The 2018 birth cohort was followed over its lifetime. The model projected and compared health outcomes and costs with and without immunization (based on vaccine-era and pre–vaccine era disease incidence estimates, respectively), assuming that observed reductions in disease incidence were fully attributable to vaccination. For the societal perspective, the model included productivity loss costs associated with immunization and disease in addition to direct medical costs. The model estimated discounted cases averted, disease-related deaths averted, life-years gained, quality-adjusted life-years gained, costs (2020 euros), and an overall benefit–cost ratio. Scenario analyses considered alternate assumptions for key model inputs.ResultsAcross all 11 pathogens, we estimated that the PIP prevented 226,000 cases of infections and 200 deaths, as well as the loss of 7,000 life-years and 8,000 quality-adjusted life-years over the lifetime of a birth cohort of 118,000 children. The PIP was associated with discounted vaccination costs of €91 million from the healthcare-sector perspective and €122 million from the societal perspective. However, vaccination costs were more than fully offset by disease-related costs averted, with the latter amounting to a discounted €126 million and €390 million from the healthcare-sector and societal perspectives, respectively. As a result, pediatric immunization was associated with overall discounted savings of €35 million and €268 million from the healthcare-sector and societal perspectives, respectively; every €1 invested in childhood immunization resulted in approximately €1.4 in disease-related cost savings to the health system and €3.2 in cost savings from a societal perspective for Belgium’s PIP. Estimates of the value of the PIP were most sensitive to changes in input assumptions for disease incidence, productivity losses due to disease-related mortality, and direct medical disease costs.ConclusionBelgium’s PIP, which previously had not been systematically assessed, provides large-scale prevention of disease-related morbidity and premature mortality, and is associated with net savings to health system and society. Continued investment in the PIP is warranted to sustain its positive public health and financial impact

    Contrasting Epidemic Histories Reveal Pathogen-Mediated Balancing Selection on Class II MHC Diversity in a Wild Songbird

    Get PDF
    The extent to which pathogens maintain the extraordinary polymorphism at vertebrate Major Histocompatibility Complex (MHC) genes via balancing selection has intrigued evolutionary biologists for over half a century, but direct tests remain challenging. Here we examine whether a well-characterized epidemic of Mycoplasmal conjunctivitis resulted in balancing selection on class II MHC in a wild songbird host, the house finch (Carpodacus mexicanus). First, we confirmed the potential for pathogen-mediated balancing selection by experimentally demonstrating that house finches with intermediate to high multi-locus MHC diversity are more resistant to challenge with Mycoplasma gallisepticum. Second, we documented sequence and diversity-based signatures of pathogen-mediated balancing selection at class II MHC in exposed host populations that were absent in unexposed, control populations across an equivalent time period. Multi-locus MHC diversity significantly increased in exposed host populations following the epidemic despite initial compromised diversity levels from a recent introduction bottleneck in the exposed host range. We did not observe equivalent changes in allelic diversity or heterozygosity across eight neutral microsatellite loci, suggesting that the observations reflect selection rather than neutral demographic processes. Our results indicate that a virulent pathogen can exert sufficient balancing selection on class II MHC to rescue compromised levels of genetic variation for host resistance in a recently bottlenecked population. These results provide evidence for Haldane's long-standing hypothesis that pathogens directly contribute to the maintenance of the tremendous levels of genetic variation detected in natural populations of vertebrates

    MARCKS as a Negative Regulator of Lipopolysaccharide Signaling

    No full text
    Myristoylated alanine-rich C kinase substrate (MARCKS) is an intrinsically unfolded protein with a conserved cationic effector domain, which mediates the cross-talk between several signal transduction pathways. Transcription of MARCKS is increased by stimulation with bacterial LPS. We determined that MARCKS and MARCKS-related protein specifically bind to LPS and that the addition of the MARCKS effector peptide inhibited LPS-induced production of TNF-α in mononuclear cells. The LPS binding site within the effector domain of MARCKS was narrowed down to a heptapeptide that binds to LPS in an extended conformation as determined by nuclear magnetic resonance spectroscopy. After LPS stimulation, MARCKS moved from the plasma membrane to FYVE-positive endosomes, where it colocalized with LPS. MARCKS-deficient mouse embryonic fibroblasts (MEFs) responded to LPS with increased IL-6 production compared with the matched wild-type MEFs. Similarly, small interfering RNA knockdown of MARCKS also increased LPS signaling, whereas overexpression of MARCKS inhibited LPS signaling. TLR4 signaling was enhanced by the ablation of MARCKS, which had no effect on stimulation by TLR2, TLR3, and TLR5 agonists. These findings demonstrate that MARCKS contributes to the negative regulation of the cellular response to LPS

    Process optimisation for anion exchange monolithic chromatography of 4.2kbp plasmid vaccine (pcDNA3F)

    Get PDF
    Anion exchange monolithic chromatography is increasingly becoming a prominent tool for plasmid DNA purification but no generic protocol is available to purify all types of plasmid DNA. In this work, we established a simple framework and used it to specifically purify a plasmid DNA model from a clarified alkaline-lysed plasmid-containing cell lysate. The framework involved optimising ligand functionalisation temperature (30-80°C), mobile phase flow rate (0.1-1.8 mL/min), monolith pore size (done by changing the porogen content in the polymerisation reaction by 50-80%), buffer pH (6-10), ionic strength of binding buffer (0.3-0.7. M) and buffer gradient elution slope (1-10% buffer B/min). We concluded that preferential pcDNA3F adsorption and optimum resolution could be achieved within the tested conditions by loading the clarified cell lysate into 400. nm pore size of monolith in 0.7. M NaCl (pH 6) of binding buffer followed by increasing the NaCl concentration to 1.0. M at 3%B/min. © 2010 Elsevier B.V

    Molecular Variability of the Adhesin-Encoding Gene pvpA among Mycoplasma gallisepticum Strains and Its Application in Diagnosis

    No full text
    Mycoplasma gallisepticum is an important pathogen of chickens and turkeys that causes considerable economic losses to the poultry industry worldwide. The reemergence of M. gallisepticum outbreaks among poultry, the increased use of live M. gallisepticum vaccines, and the detection of M. gallisepticum in game and free-flying song birds has strengthened the need for molecular diagnostic and strain differentiation tests. Molecular techniques, including restriction fragment length polymorphism of genomic DNA (RFLP) and PCR-based random amplification of polymorphic DNA (RAPD), have already been utilized as powerful tools to detect intraspecies variation. However, certain intrinsic drawbacks constrain the application of these methods. The main goal of this study was to determine the feasibility of using an M. gallisepticum-specific gene encoding a phase-variable putative adhesin protein (PvpA) as the target for molecular typing. This was accomplished using a pvpA PCR-RFLP assay. Size variations among PCR products and nucleotide divergence of the C-terminus-encoding region of the pvpA gene were the basis for strain differentiation. This method can be used for rapid differentiation of vaccine strains from field isolates by amplification directly from clinical samples without the need for isolation by culture. Moreover, molecular epidemiology of M. gallisepticum outbreaks can be performed using RFLP and/or sequence analysis of the pvpA gene
    corecore