263 research outputs found

    Structural basis for the mechanism of ABC transporters.

    Get PDF

    Crystallization and initial X-ray diffraction analysis of the tellurite-resistance S-adenosyl-l-methionine transferase protein TehB from Escherichia coli

    Get PDF
    TehB is an S-adenosyl-l-methionine (SAM) dependent methyltransferase that detoxifies tellurite in bacteria. The Escherichia coli TehB protein was purified and crystallized in the presence of both SAM and sinefungin. The TehB-SAM and TehB-sinefungin crystals both diffracted X-rays to 1.9 Å resolution. The TehB-SAM crystals belonged to space group C2, with unit-cell parameters a = 60.0, b = 56.1, c = 130.6 Å, β = 97.9°. The TehB-sinefungin crystals belonged to space group P21, with unit-cell parameters a = 59.1, b = 55.5, c = 129.7 Å, β = 95.9°

    Desolvation of the substrate binding protein TauA dictates ligand specificity for the alkanesulfonate ABC importer TauABC

    Get PDF
    Under limiting sulfur availability, bacteria can assimilate sulfur from alkanesulfonates. Bacteria utilize ATP-binding cassette (ABC) transporters to internalise them for further processing to release sulfur. In gram-negative bacteria the TauABC and SsuABC ensure internalization, although, these two systems have common substrates, the former has been characterised as a taurine specific system. TauA and SsuA are substrate binding proteins (SBPs) that bind and bring the alkanesulfonates to the ABC importer for transport. Here, we have determined the crystal structure of TauA and have characterised its thermodynamic binding parameters by isothermal titration calorimetry in complex with taurine and different alkanesulfonates. Our structures revealed that the coordination of the alkanesulfonates is conserved, with the exception of Asp205 that is absent in SsuA, but the thermodynamic parameters revealed a very high enthalpic penalty cost for binding of the other alkanesulfonates relative to taurine. Our molecular dynamic simulations indicated that the different levels of hydration of the binding site contributed to the selectivity for taurine over the other alkanesulfonates. Such selectivity mechanism is very likely to be employed by other SBPs of ABC transporters

    Reformulated Red Mud: A Robust Catalyst for In Situ Catalytic Pyrolysis of Biomass

    Get PDF
    Biomass feedstocks contain inorganic compounds generally classified as ash. The ash consists of compounds of potassium, calcium, magnesium, silicon, phosphorus. and other elements. These elements have been reported to influence both the pyrolysis reactions as well as the destabilization of the pyrolysis oils during storage. The inorganic elements have also been reported to deposit on catalyst surfaces during in situ catalytic pyrolysis leading to the eventual deactivation of acidic catalysts such as zeolites. The deposition of inorganic elements and their effects on formulated red mud (FRM) catalyst during in situ catalytic pyrolysis of pinyon juniper wood was investigated. The inorganic elements were measured for the fresh, coked, and regenerated catalysts. The BET specific surface area of the FRM catalyst decreased from 76 m2/g for the fresh catalyst to 53 m2/g for the stable regenerated catalyst. After three regenerations, the BET specific surface area stabilized at 53 m2/g and remained constant after all other regenerations. Potassium, calcium, magnesium, and phosphorus were deposited on the catalyst. Potassium deposition was linear with the number of regenerations while magnesium and calcium depositions were initially rapid but leveled-off after three regenerations of the catalyst. Phosphorus deposition was almost linear, but the data were more scattered compared to that of potassium. The potassium deposition was attributed to physical phenomenon whereas calcium and magnesium depositions were more akin to chemical reactions related to the loss of BET surface area of the catalyst. The deposition of these elements on the surface of the catalyst did not deactivate it. After each catalyst regeneration, the oil yield was not significantly affected and the oil oxygen content and viscosity decreased slightly. This clearly showed that formulated red mud is a robust catalyst suitable for in situ catalytic fast pyrolysis of biomass

    Structural basis for the modulation of MRP2 activity by phosphorylation and drugs.

    Get PDF
    Multidrug resistance-associated protein 2 (MRP2/ABCC2) is a polyspecific efflux transporter of organic anions expressed in hepatocyte canalicular membranes. MRP2 dysfunction, in Dubin-Johnson syndrome or by off-target inhibition, for example by the uricosuric drug probenecid, elevates circulating bilirubin glucuronide and is a cause of jaundice. Here, we determine the cryo-EM structure of rat Mrp2 (rMrp2) in an autoinhibited state and in complex with probenecid. The autoinhibited state exhibits an unusual conformation for this class of transporter in which the regulatory domain is folded within the transmembrane domain cavity. In vitro phosphorylation, mass spectrometry and transport assays show that phosphorylation of the regulatory domain relieves this autoinhibition and enhances rMrp2 transport activity. The in vitro data is confirmed in human hepatocyte-like cells, in which inhibition of endogenous kinases also reduces human MRP2 transport activity. The drug-bound state reveals two probenecid binding sites that suggest a dynamic interplay with autoinhibition. Mapping of the Dubin-Johnson mutations onto the rodent structure indicates that many may interfere with the transition between conformational states

    Structural and functional basis for lipid synergy on the activity of the antibacterial peptide ABC transporter McjD

    Get PDF
    The lipid bilayer is a dynamic environment that consists of a mixture of lipids with different properties that regulate the function of membrane proteins; these lipids are either annular, masking the protein hydrophobic surface, or specific lipids, essential for protein function. In this study, using tandem mass spectrometry, we have identified specific lipids associated with the Escherichia coli ABC transporter McjD, which translocates the antibacterial peptide MccJ25. Using non-denaturing mass spectrometry, we show that McjD in complex with MccJ25 survives the gas-phase. Partial delipidation of McjD resulted in reduced ATPase activity and thermostability as shown by Circular Dichroism, both of which could be restored upon addition of defined E. coli lipids. We have resolved a phosphatidylglycerol lipid associated with McjD at 3.4 Ã… resolution, while molecular dynamic simulations carried out in different lipid environments assessed the binding of specific lipids to McjD. Combined, our data show a synergistic effect of zwitterionic and negatively charged lipids on the activity of McjD; the zwitterionic lipids provide structural stability to McjD whereas the negatively charged lipids are essential for its function

    Identification of inhibitors of the Schistosoma mansoni VKR2 kinase domain

    Get PDF
    Schistosomiasis is a neglected tropical disease caused by parasitic flatworms. Current treatment relies on just one partially effective drug, praziquantel (PZQ). Schistosoma mansoni Venus Kinase Receptors 1 and 2 (SmVKR1 and SmVKR2) are important for parasite growth and egg production, and are potential targets for combating schistosomiasis. VKRs consist of an extracellular Venus Flytrap Module (VFTM) linked via a transmembrane helix to a kinase domain. Here, we initiated a drug discovery effort to inhibit the activity of the SmVKR2 kinase domain (SmVKR2KD) by screening the GSK published kinase inhibitor set 2 (PKIS2). We identified several inhibitors, of which four were able to inhibit its enzymatic activity and induced phenotypic changes in ex vivoS. mansoni. Our crystal structure of the SmVKR2KD displays an active-like state that sheds light on the activation process of VKRs. Our data provide a basis for the further exploration of SmVKR2 as a possible drug target

    Managerial Hubris, Trade-Associations, and Regulatory Knowledge in Micro-Firms

    Get PDF
    To avoid breaking the law for regulatory non-compliance, it is essential that micro-firm owner-managers are aware of deficiencies in their knowledge, so that they can seek improvement and avoid over-confidence (i.e. hubris) in their knowledge levels. Using newly collected survey data from micro-firms in the English accommodation sector and multivariate techniques, the authors explore the possibility of hubris by making a novel distinction between the Perceived-Knowledge and Actual-Knowledge of regulation held by micro-firm owner-managers. Both Perceived-Knowledge (from self-assessment) and Actual-Knowledge (from a simple test) over four core areas of regulation are found to be different, generally poor and suggestive of hubris. The relationship between these knowledge levels is further explored by considering the role of trade association membership (since they support members) and attitude (since it effects learning). Attitude is found to be positively associated with both forms of knowledge, while trade association memberships are also found to be associated with enhanced Perceived-Knowledge, but not Actual-Knowledge. In light of the results, the authors suggest several priority areas for improving Actual-Knowledge and self-assessment skills, and areas for future research.</p

    Substrate-bound outward-open structure of a Na+-coupled sialic acid symporter reveals a new Na+ site

    Get PDF
    Many pathogenic bacteria utilise sialic acids as an energy source or use them as an external coating to evade immune detection. As such, bacteria that colonise sialylated environments deploy specific transporters to mediate import of scavenged sialic acids. Here, we report a substrate-bound 1.95 Å resolution structure and subsequent characterisation of SiaT, a sialic acid transporter from Proteus mirabilis. SiaT is a secondary active transporter of the sodium solute symporter (SSS) family, which use Na+ gradients to drive the uptake of extracellular substrates. SiaT adopts the LeuT-fold and is in an outward-open conformation in complex with the sialic acid N-acetylneuraminic acid and two Na+ ions. One Na+ binds to the conserved Na2 site, while the second Na+ binds to a new position, termed Na3, which is conserved in many SSS family members. Functional and molecular dynamics studies validate the substrate-binding site and demonstrate that both Na+ sites regulate N-acetylneuraminic acid transport
    • …
    corecore