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Abstract 

Biomass feedstocks contain inorganic compounds generally classified as ash.  The ash consists of 

compounds of potassium, calcium, magnesium, silicon, phosphorous and other elements.  These 

elements have been reported to influence both the pyrolysis reactions as well as destabilizing 

the pyrolysis oils during storage.  The inorganic elements have also been reported to deposit on 

catalyst surfaces during in situ catalytic pyrolysis leading to the eventual deactivation of acidic 

catalysts such as zeolites.  The deposition of inorganic elements and their effect on formulated 

red mud (FRM) catalyst during in situ catalytic pyrolysis of pinyon juniper wood was investigated. 

The inorganic elements were measured for the fresh, coked, and regenerated catalysts.  The BET 

specific surface area of the FRM catalyst decreased from 76 m2/g for the fresh catalyst to 53 m2/g 

for the stable regenerated catalyst.  After three regenerations, the BET specific surface area 

stabilized at 53 m2/g and remained constant after all other regenerations.  Potassium, calcium, 

magnesium, and phosphorous were deposited on the catalyst.  Potassium deposition was linear 

with the number of regenerations while magnesium and calcium depositions were initially rapid 

but leveled off after three regenerations of the catalyst.  Phosphorous deposition was almost 

linear, but the data were more scattered compared to potassium. The potassium deposition was 

attributed to physical phenomenon whereas calcium and magnesium depositions were more 

akin to chemical reactions related to the loss of BET surface area of the catalyst.  The deposition 

of these elements on the surface of the catalyst did not deactivate it.  After each catalyst 

regeneration, the oil yield was not significantly affected and the oil oxygen content and viscosity 

decreased slightly. This clearly showed that formulated red mud is a robust catalyst suitable for 

in situ catalytic fast pyrolysis of biomass. 
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Introduction 

Pyrolysis of biomass followed with upgrading of produced bio-oil into liquid fuels and chemicals 

has a potential to be a sustainable method of meeting the hydrocarbons needs of society.  

However, the promise of producing hydrocarbons fuels from biomass has been fraught with poor 

quality oils from conventional pyrolysis that do not lend themselves readily to upgrading in 

traditional unit operations. Properties such as, poor thermal and chemical stability, high moisture 

content, high acidity, high oxygen content, and low energy density, make conventional pyrolysis 

oils unsuitable for direct application and upgrading.1-10 Traditional upgrading methods such as 

solvent addition,11,12 esterification,13-17 hydrodeoxygenation,18-30 supercritical fluid 

treatment,31,32 aldol condensation,33,34 and co-processing with petroleum products,35-39 have all 

been investigated, but none of these methods have been commercialized.  Current research 

efforts in pyrolysis oils stabilization and upgrading are focused on catalytic pyrolysis (in situ and 

ex situ)40-52 followed by hydrotreating and processing in either standalone units or used as 

blending stock. These methods require suitable catalysts that are stable, robust, and low cost. A 

large number of investigations have involved various zeolite catalysts,40-55 but in general, most 

zeolites and other acidic catalyst tend to be deactivated by the alkali and alkaline earth metal 

oxides in the biomass feedstocks.57-59 The acidic catalysts also tend to be fouled by the rapid 

deposition of coke on the active sites. The acidic zeolites also tend to produce large fractions of 

aromatic compounds, which upon upgrading lowers the octane number of the fuels and 

therefore are only useful as blending stocks. Because of these challenges associated with the use 

of zeolites and other acidic catalysts new types of catalysts such as red mud,60-68 bentonite,69,70 

and other oxide catalysts 71,72 are being investigated for catalytic pyrolysis of biomass feedstocks 

to produce stable pyrolysis oils that can be easily upgraded into fuels and chemicals.  The oxide 

catalysts have one major advantage in that they are not poisoned by the alkali and alkaline earth 

metals found in biomass, however, they also suffer from coke deposition on the active catalyst 

sites. These oxide catalysts deoxygenate the biomass through dehydration, decarbonylation, and 

decarboxylation, which produce large fractions of water in the subsequent pyrolysis oils.  

One of the most promising oxide catalysts for biomass pyrolysis is red mud, 60-68 that is a waste 

product from the Bayer process of converting bauxite into alumina. The major metal oxides found 

in red mud are Fe2O3, Al2O3, TiO2, CaO, as well as minor oxides from Zn, V, Ni, etc.  Red mud, has 

been reported to be effective as HZSM-5 in the pyrolysis of biomass.60 Pyrolysis oils produced 

from the in situ catalytic pyrolysis of pinyon juniper were stable and could be upgraded to 

hydrocarbons in a single-stage hydrotreater.73,74 Other studies conducted using synthetic red 

mud also showed that it was an effective catalyst for biomass pyrolysis.64 Similar to other 

catalysts used in the in situ catalytic pyrolysis process, coke and inorganic compounds were 

deposited on the surface during pyrolysis.60 However, their impact on the catalytic properties of 

red mud catalyst is still unclear. 

Apart from causing deactivation of zeolite catalysts, alkali and alkaline earth metals (AAEM), have 

been extensively studied for their catalytic roles in conventional biomass pyrolysis.83-87  Various 
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salts of AAEM catalysts have been sorbed into biomass to investigate their influence on the 

pyrolysis reactions.83-87 Potassium salts have been reported to suppress levoglucosan production 

but favor hydroxyacetaldehyde production.75-87 In contrast, magnesium salts favored 

levoglucosan production and suppressed glycoaldehyde production.82 Calcium oxides and salts 

tended to favor gasification of the biomass.80  Transition metals such as iron have been reported 

to favor levoglucosan production and Lewis acid salts such as AlCl3, and ZnCl2 also catalyze 

pyrolysis reactions.85-87    

During in situ catalytic pyrolysis, there is a potential to deposit AAEM or their compounds on the 

surface of the catalysts either during the pyrolysis process or during catalysts regeneration. In 

the case of red mud used for in situ catalytic pyrolysis studies of biomass, the catalyst was 

regenerated and reused several times without any sign of catalyst deactivation. In this paper, we 

report the deposition of various inorganic elements and coke on the red mud catalyst surface 

and their effects on the catalyst activity.  

 

Materials and Methods 

Red mud samples were obtained from an alumina processing company and prepared into a 

suitable form for fluidization and minimizing the attrition of the catalyst as reported by Yathavan 

and Agblevor,60 and Agblevor et al.73  Colloidal alumina was used as binder and colloidal silica 

(Ludox®) was added to improve attrition resistance. In this process suitable proportions of red 

mud, colloidal alumina, and colloidal silica were mechanically mixed in a blender and then dried 

in an oven at 105 oC for twelve hours. The dried material was ground and sieved to particle size 

180µm<dp<450µm.The reformulated red mud catalysts were calcined at 600 oC for six hours and 

sieved to particle  size 180µm<dp<450µm to avoid plugging of the hot gas filter used to remove 

biochar and fine catalyst particles. This material was used for the biomass pyrolysis.  After 

pyrolysis, the catalysts were regenerated at 650 oC for six hours, and sieved to remove the 

biomass ash and make-up catalysts was added to bring it to a constant mass for each pyrolysis 

experiment. 

The fresh (not used for pyrolysis), used, and regenerated catalysts were characterized using 

Brunauer-Emmette-Teller (BET) specific surface area method, as described in Jahromi and 

Agblevor.27 Scanning electron microscopy (SEM) was used to analyze the surface morphology of 

the catalysts.  Inductively coupled plasma (ICP) spectroscopy was used to determine the 

elemental composition of the bulk catalyst and this was complemented by x-ray diffraction 

(XRD) spectroscopic analysis. The elemental composition of the catalyst surface was 

determined using x-ray photoelectron spectroscopy (XPS). Acid-base properties of the catalyst 

were determined using ammonia temperature program desorption (NH3-TPD) and carbon 

dioxide chemisorbed pulse titration (CO2-CPT). The SEM, XPS, NH3-TPD, CO2-CPT, pore size and 

pore volume were determined by the Pacific Northwest National Laboratory (PNNL), while the 
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XRD analysis was conducted by the Hoffman Hazen Laboratories (Golden, CO). All other 

analyses were conducted in-house at Utah State University, Logan UT.  

N2 adsorption/desorption isotherms at −196°C were measured using a Micromeritics ASAP 2020 

analyzer.  The samples were out-gassed under vacuum at 150°C.  The specific surface area was 

calculated using the BET equation.   

Elemental analysis of the samples was performed by inductively coupled plasma-optical 

emission spectroscopy.  Solid samples were digested in aqua regia in sealed microwave vessels 

and then liquid was analyzed by inductively coupled plasma.   

XPS measurements were performed with a Physical Electronics Quantera Scanning X-ray 

Microprobe using a focused monochromatic Al Kα X-ray (1486.7 eV) source for excitation and a 

spherical section analyzer. The X-ray beam was incident normal to the sample and the 

photoelectron detector was at 45° off-normal. High energy resolution spectra were collected 

using a pass-energy of 69.0 eV with a step size of 0.125 eV.   

Scanning electron micrographs were acquired using an FEI Helios 600 NanoLab FIB-SEM. NH3-

TPD was performed using a plug-flow reactor cell equipped with a TCD detector. The catalyst 

was treated at 150 oC in He for 2 hours. A stream of NH3 (10%) in He was introduced for 1 hour 

at 80 oC to saturate the catalyst surface. The sample was then purged with He at 100 oC in He 

for at least 3 hours to remove physisorbed NH3. NH3 desorption was then carried out by heating 

the sample from 373 to 773 K at 10 K min-1.  

CO2 chemisorption was performed by pulsed titration over the catalysts treated at 150 oC. Total 

CO2 adsorption was measured by pulsing CO2 at 40 oC in He. Then after flowing in He for 30 

min, the second adsorption was conducted by pulsing CO2 to measure physisorbed CO2. The 

difference was then calculated as chemisorbed CO2.  

Catalytic pyrolysis was conducted in a pilot scale fluidized bed pyrolysis reactor using formulated 

red mud (FRM) as the catalyst bed. Ground pinyon-juniper (PJ) wood was used as the biomass 

feedstock. The details of the reactor description have been published previously and will not be 

repeated here.45 The fluidized bed reactor was loaded with 1000 g of FRM catalyst and heated to 

reaction temperature. The catalytic pyrolysis was conducted at 450 oC using N2 as the initial 

fluidizing gas, which was gradually replaced with the non-condensable pyrolysis gases after 

compression and recycling. The moisture content of the biomass was 5 wt% and the biomass 

feed rate was 2 kg/h. The pyrolysis products were passed through a hot gas filter to separate 

biochar and fine catalysts from the vapors, which were then sent to two shell and tube 

condensers and an electrostatic precipitator (ESP) for vapor condensation.  The condenser oils 

had high water content while the ESP oils had low water content (1-2 wt%).  During the pyrolysis, 

oil samples were collected on hourly basis from all the condensers and ESP.  The oils from the 

ESP were analyzed for viscosity, density, and moisture content during the pyrolysis process.  The 

variation in the viscosity of the ESP oil was used as indicator of catalyst activity as reported by 

Agblevor et al.73 Low viscosity oils implied high catalyst activity, while high viscosity oils signified 
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catalyst deactivation. Most runs were conducted for five hours after which there was significant 

signs of catalyst deactivation as shown by the high viscosity of the ESP oil.  

After each five-hour run, the catalyst and the biochar were collected from the hot gas filter and 

the reactor. The biochar was easily separated from the catalyst because after each run, the 

hematite in the FRM was converted to magnetite, which was magnetic and therefore easily 

separated from the biochar using a magnetic sieve.  After biochar separation, the catalyst was 

regenerated in a muffle furnace at 650 oC overnight.  The regenerated catalyst and ash from 

biomass were separated by sieving the mixture to remove the ash and fines from the catalyst. 

Any losses in catalyst due to attrition was replenished with fresh make-up catalyst. The catalyst 

used for these studies was regenerated for more than twenty times, without loss of activity, 

however, the data reported in this paper were for eight times regeneration. 

At the end of each run, samples of catalyst were taken for characterization using methods 

described above.  There were eight catalytic pyrolysis experiments using red mud as the catalyst 

and the corresponding regeneration of the catalyst.  

The hourly oil samples collected from the ESP were analyzed for viscosity, pH, density, Karl 

Fischer water content, and ultimate composition. Some of the oil samples were also hydrotreated 

to access their stability using a nickel on red mud (Ni/RM) catalyst as reported in Jahromi and 

Agblevor.26-28  

 

Results and Discussion  

Changes in FRM catalyst after single in situ catalytic fast pyrolysis (CFP).  

The red mud catalyst was prepared using a proprietary formula to reduce attrition during the 

fluidization processes because red mud is very soft and forms fine particles when dried.  The 

particles under ago attrition easily and tend to block the hot gas filter. Figure 1 shows the attrition 

characteristics of some of the formulated red mud (FRM) catalyst. The attrition characteristics 

were determined by running the FRM in a glass fluidized bed reactor for 72 hours at a cold N2 

flowrate of 25 L/min and sieving samples after fluidization. The initial FRM particle size was 

180µm<dp<450µm and any particle size less than this range was considered as a loss and 

equivalent material was added as make-up.  As can be seen from Figure 1, the attrition rate was 

strongly dependent upon the FRM formulation components.  The red mud content varied from 

50 wt% to 60 wt% with addition of various proportions of binders and attrition-resistant 

components. The attrition rate varied from 0.0267 g /h to 0.0719 g/h.  The losses ranged from 

<1% to 3 %.  Since most of the catalytic pyrolysis experiments were completed within 5 hours, it 

is clear that the average loss of RFM due to attrition was about 1%, which is a reasonable loss 

and what will be acceptable on large-scale operations. The FRM with losses less than 1% was 

selected for the studies reported in this paper.  
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Figure 1. Attrition rate of formulated red mud catalyst with different formulation components 

(RM = red mud; Al = colloidal alumina; Lud = colloidal silica (Ludox®)). 

 

The XRD analyses of the raw red mud (fresh), calcined FRM catalysts before and after pyrolysis 

show that the major changes occurred in each stage of the treatment. After calcination, the FRM 

lost some peaks that were attributed to Gibbsite (Al(OH)3) and Goethite (FeO(OH)) due to 

dehydration of these components as reported by Agblevor et al.88 After pyrolysis, there were 

major changes in the structure of the catalyst due the conversion of almost all the hematite 

component to magnetite (see supplementary data S1). Even though there were biochar and coke 

on the surface of the used catalyst, there was no significant difference in the XRD spectrum of 

regenerated and used catalyst. These results corroborate the assertion that deactivation of the 

catalyst was due to fouling of the catalyst by coke which restricted access of the reactants to the 

active sites.    

The SEM analysis of the calcined FRM and the regenerated FRM are shown in Figure 2. The 

surface morphology of the calcined FRM show smaller grains compared to the regenerated FRM.  

The regeneration appeared to increase the grain size of the catalyst probably due to sintering of 

some fractions during the pyrolysis and regeneration processes. The sintering of the particles is 

also supported by the BET specific surface analysis, which showed decrease in the specific surface 

area after regeneration of the catalyst.  
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Figure 2. SEM of fresh and regenerated FRM catalysts: a) fresh catalyst; b) 1X regenerated 

catalyst. 

The BET specific surface area, pore volume, and pore size of the RFM catalyst are shown in Table 

1 and Figure 3.  The specific surface area of FRM (93.3 m2/g) was greater than that of the raw red 

mud (30 m2/g) and regenerated FRM (Table 1).  The regeneration and pyrolysis processes 

affected the physical properties of the catalyst, which resulted in the decrease in the BET specific 

surface area, decrease in pore volume, and increase in the pore size.  Pore size distribution (Figure 

3) shows the loss of the smaller pores. The SEM photos (Figure 2) clearly showed increase in 

particle size due to particle agglomeration which could contribute to the decrease in specific 

surface area and decrease in the pore volume. The deposition of inorganic compounds from the 

biomass feedstocks also appeared to have contributed to the loss in surface area probably due 

to blocking of the pores as discussed below and conversion of colloidal alumina to aluminates 

and subsequent loss because of catalyst attrition.  

 

Table 1. Properties of fresh and regenerated FRM catalyst 

Surface area, pore volume and pore size Acid-base properties 

Sample SBET 
(m2/g) 

Pore 
volume 
(cm3/g) 

Pore 
size 
(nm) 

NH3-TPD 
(µmol/g) 

NH3-TPD  
(µmol/m2) 

CO2-CPT 
(µmol/g) 

CO2-CPT 
(µmol/m2) 

Fresh 
catalyst 

93.3 0.30 10.8 95 1.02 15 0.16 

Regenerated 
catalyst 

53.9 0.21 12.8 39 0.69 7 0.11 
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 Figure 3. Pore size and volume distribution of fresh and regenerated FRM catalysts. 

 

The acid-base properties of the FRM were determined using ammonia temperature program 

desorption (NH3-TPD) for the acidity, while carbon dioxide pulse titration (CO2-PT) was used to 

determine the basicity of the catalyst before and after pyrolysis.  The NH3-TPD data of the fresh 

and regenerated catalysts are shown in Table 1.  It can be clearly seen that there were some 

changes in the acidity of the catalyst before and after regeneration.  The specific acidity of the 

fresh catalyst was almost 2.4 times that of the regenerated catalyst (see Table 1), but the 

differences were much smaller per unit surface area basis. The decreased acidity after 

regeneration could be due to the deposition of the alkali and alkaline earth metals on the surface 

of the catalyst and also the loss of Al as shown by the decrease in the BET specific surface area.  

The basicity of the fresh and regenerated catalyst show that the specific basicity of the fresh 

catalyst was almost twice that of the regenerated catalyst, which is similar to the trend for the 

acidity, but was contrary to what was expected from the deposition of basic metallic oxides.  

The deposition of alkali and alkaline earth metal may create basic sites if they were in oxide 

form, such as CaO or MgO. However, it is also possible that they formed CaSiO3 or MgAl2O4, 

which are relatively neutral species.  At the same time, formation of these species could also 

reduce existing basic sites, such as TiO2, by deposition (see supporting data S1). In general, the 

acid-base properties of the catalyst were retained after the regeneration. 

 The bulk and surface compositions of the FRM were measured using ICP and XPS respectively. 

The concentration of major components of the fresh and regenerated FRM are shown in Figures 

4 and 5. The variation of major elements in the bulk catalyst before and after regeneration were 

different for various elements. The concentrations of Fe, Ti, and Na were similar for both the 

fresh and regenerated catalysts suggesting that these components were not influenced by the 
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inorganic elements in the biomass feedstock. However, Al, Ca, and K contents varied considerably 

before and after regeneration. The Al content of the FRM comprised of the alumina from the red 

mud and the colloidal alumina used as binder. The large decrease in the Al content of the catalyst 

was probably due to attrition of the binder component during fluidization and not due to leaching 

from the red mud. This assertion is further supported by the regeneration studies that showed 

the levelling of Al after three regenerations. It appears the original Al, Ti, and Fe in the red mud 

itself were not affected by this attrition process. The loss of Al could be due to the formation of 

aluminates that resulted in the loss of binding properties of the colloidal alumina and hence 

causing loss through attrition. In contrast, Ca and K contents increased considerably after 

regeneration probably because of the deposition of these elements from the biomass feedstock 

during the pyrolysis and regeneration of the catalyst. These increases in concentrations were also 

corroborated by the increases with the number of regenerations (which is equivalent to 

increased time on stream) as discussed below.   

  

 

 

Figure 4. ICP analysis of bulk catalyst showing concentrations of major elements.  
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Figure 5. XPS analysis of catalyst surface showing concentrations of major elements. 

 

The XPS analyses of the catalysts’ surfaces showed a more dramatic variation of the major 

elements in the catalyst (Figure 5). Similar to the bulk composition, the surface Fe, Ti, and Na did 

not show any significant changes before and after regeneration of the catalyst (Figure 5). It 

appeared that these components did not undergo any sintering or agglomeration during the 

regeneration, and neither were there any deposition of these elements from the biomass during 

the pyrolysis and regeneration processes. In contrast, Al, Ca, Mg, and K showed significant 

changes in the surface composition of the catalyst.  In case of the Al, there was 50% decrease in 

the surface composition after regeneration probably because of the formation of aluminate 

agglomerates and then attritive loss during the fluidized bed catalytic pyrolysis. 

 The Ca, K, and Mg (AAEM) had dramatic changes in the surface composition of the catalyst after 

pyrolysis and regeneration (pyrolysis/regeneration). In the case of Ca, the surface composition 

was more than ten times that of the fresh catalyst after pyrolysis/regeneration (Figure 5). This 

major difference in the surface composition was attributed to deposition of Ca from the biomass 

feedstock.  The analysis of the biomass ash showed that Ca content was highest at 29.5 wt%, 

which explains why there was so much Ca deposition after pyrolysis/regeneration (Table 2). 

Further discussion of the Ca deposition is expanded in the multiple regeneration section. The K 

deposition on the surface was also very high after the pyrolysis/regeneration; but in this case, 

there was about five times more K on the surface of the catalyst after the first 

pyrolysis/regeneration compared to the fresh catalyst.  This high K on the catalyst surface was 

also attributed to the deposition from the biomass during the pyrolysis and regeneration 

processes. Similarly, the Mg concentration on the catalyst surface was also about five times 

higher than that of the fresh catalyst. The analysis of the PJ biomass ash showed high contents 

of all these elements, which will account for high deposition on the catalyst surface. The 

deposition appeared to be directly correlated with the concentration of these elements in the 
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biomass.  Ca concentration in the biomass ash was the highest, and therefore the surface 

concentration was higher than those for K and Mg, which were several factors lower than the Ca 

(see Table 2). The increase in the concentration of these metals were not due enrichments 

through leaching of other elements because elements such as Fe, Ti, Na which do not occur in 

any significant quantities in the biomass did not increase in concentration on the surface or bulk 

of the catalyst after the regeneration. 

During the pyrolysis of the PJ wood, viscosity of the ESP oil was monitored as a method of 

determining the activity of the catalyst.  As shown in Figure 6, the viscosity of the ESP oil increased 

with time on stream, which was in agreement with Agblevor et al.73 This increase in viscosity with 

time on stream was attributed to catalyst deactivation and was corroborated by the data from 

the catalyst regeneration (second run).  The second run was carried out after the catalyst was 

regenerated after 5 hours on stream when the catalyst was deemed deactivated. After 

regeneration, it is clear that the catalyst performance was similar to the fresh catalyst pyrolysis 

with respect to ESP oil viscosity variation. The data also suggested that the deactivation of the 

catalyst with time on stream was due to the fouling of the active sites through coke formation.  

 

 

Figure 6. Comparison of catalyst activities of FRM using viscosity variation during time on 

stream. 

 

In summary, although there were changes in SBET, pore size, pore volume, surface and bulk 

compositions of the FRM catalyst, its catalytic activity during in situ CFP of biomass was fully 

restored after regeneration through the combustion of coke/char. The deposition of the 
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inorganic elements from the biomass onto the surface of the catalyst did not deactivate or poison 

the catalyst. 

 

Effect of Changes in FRM catalyst after multiple in situ catalytic fast pyrolysis (CFP) and 

regeneration on catalyst activity and performance 

In the previous section, it was shown that biomass inorganic compounds were deposited on the 

catalyst after single pyrolysis and regeneration events. In this section the effect of multiple 

pyrolysis and regenerations events on the deposition of inorganic compounds on catalyst 

properties and products are discussed. The FRM catalyst was used for pyrolysis followed by 

regeneration for over twenty times. Several parameters were measured to ascertain the effect 

of multiple pyrolysis/regeneration on the physico-chemical properties of the catalyst.  

The BET specific surface area (SBET) of the catalyst was measured and plotted against the number 

of pyrolysis/regenerations (Figure 7).  It should be noted that this catalyst was prepared from 

another batch and therefore its initial SBET was different from the one used for the studies in the 

previous section. The SBET of the catalyst initially decreased during the first three 

pyrolysis/regenerations, and then stabilized at 53.3 m2/g without significant changes after 

several pyrolysis/regeneration events. The initial decreases in SBET was attributed to sintering 

because of chemical reaction between Na, Al, Ca, C, and Si oxides in the sample to form larger 

grains of sodium alumina carbonate silicate (3Na.AlSi4.Na2.CO3) and attrition of colloidal alumina 

binder component of the catalyst.   

A major contributor to the specific surface area of the catalyst was the colloidal alumina used as 

a binder. The alumina appeared to have reacted with some of the other catalyst components to 

form aluminates, which probably caused the decrease in the surface area of the catalyst as seen 

by the increase in grain size of the catalyst in the SEM photos (Figure 2). The decrease in SBET 

could also be due to the deposition of various inorganic compounds from biomass on the surface 

and pores of the catalyst as shown by the XPS analysis of the catalyst surface discussed above.  

The deposits could block the pores of the catalyst and thus contribute to the reduction of the 

surface area over time. This contribution appeared to be limited, because although more material 

was deposited on the catalyst after the third regeneration, the SBET remained constant probably 

because these later depositions occurred only on the outer surface of the catalyst and did not 

penetrate the pores. 

 

Table 2. Elemental composition of pinyon juniper biomass ash. 

 Concentration in PJ ash (wt%) Concentration in PJ ash (mg/kg) 

Elements K Ca Mg P S Al Fe Si Na Sr 

 1.63 29.50 1.00 0.51 0.37 7238 8792 14333 5149 1022 
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Figure 7. Variation of BET specific surface area with regeneration of the FRM catalyst. 

  

 

Figure 8.  Variation of various elements in the bulk catalyst during regenerations. 

 

The bulk compositional analysis of several times regenerated catalysts using ICP is shown in 

Figures 8 and 9. The Al content of the catalyst decreased rapidly from 10.7 wt% and reached a 

minimum of 6.0 wt% and then rose slightly to 7.0 wt% (Figure 8) probably because of the 

formation of aluminates and then attrition as discussed above.  After each run, the catalyst was 

recovered by magnetic separation and then regenerated in a muffle furnace by combustion. 

Since only the magnetic fraction of the catalysts were collected, any attrited colloidal alumina 
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and aluminates were likely to be lost and the overall alumina content of the catalyst would 

decrease. However, because the decreases in Al content levelled-off after the third regeneration, 

this  suggested that only the poorly bonded colloidal alumina and aluminates were attrited from 

the catalyst and the core red mud catalyst with strongly bonded alumina were retained after the 

third regeneration. 

The calcium (Ca) concentration on the catalyst increased rapidly to a maximum of 5 wt % and 

then decreased slightly to 4.3 wt% where it appeared to level-off.  This initial rapid increase was 

attributed to deposition of calcium from the biomass ash component (Table 3), which reacted 

with the Al to form aluminates.  It appeared when the alumina reactants were exhausted, the 

calcium reached a maximum and then decreased slightly.  The slight decrease was attributed to 

attrition of the Ca that was not bonded to the alumina and was therefore lost during the magnetic 

separation. The increase in Ca content of the catalyst cannot be attributed to the relative 

enrichment due to the loss of alumina because Na, Ti, and Fe, which are also components of the 

catalyst did not increase in concentration with the number of regenerations (Figures 4,5 and 8). 

This deposition of Ca can also not be necessarily detected in the XRD analysis because only 

crystallites can be observed in XRD analysis.  Although the Ca will not vaporize easily, during the 

in situ biomass pyrolysis, the liquefied biomass will be in intimate contact with the catalyst and 

therefore inorganic elements in the liquefied biomass could be easily transferred to the catalyst.  

In studies reported by Stefanidis et al,57 it was observed that Ca was indiscriminatively deposited 

on the surface of the zeolite catalyst during in situ catalytic pyrolysis of the biomass, which also 

corroborates our hypothesis.  In contrast, in conventional pyrolysis where there is no catalyst 

present, the Ca and other inorganic elements are retained in the biochar. Thus, to the best of our 

knowledge the observed increase in Ca content on the catalyst was due to deposition from the 

biomass, which is similar to the observations of Stefanidis et al.57 

Sodium (Na) concentration in the catalyst did not appear to vary very much with the number of 

regenerations because Na content of the biomass ash was relatively low and therefore appeared 

to have very little deposition on the catalyst.  The catalyst itself had a relatively high level of Na 

and contribution from the biomass was minimal. This observation is also in agreement with 

Stefanidis et al57 who also did not observe any significant changes on the deposition of Na from 

the biomass on their zeolite catalyst during in situ catalytic pyrolysis.  

The potassium (K) content of the catalyst increased with each pyrolysis/regeneration event. The 

deposition of K on the catalyst increased linearly for the eight pyrolysis/regenerations (Figure 9) 

unlike the Ca deposition that level-off. It appeared the K was adsorbed on different sites that had 

very little interaction with the alumina and was therefore not lost by attrition.  It has also been 

reported that the deposition of K on the zeolite catalyst from biomass during catalytic pyrolysis 

was very selective while those of Ca and Na were non-selective and mostly on the surface of the 

catalyst, which will corroborate our observation. Because the concentration of the potassium in 

both the ash and the catalyst were relatively low, the linear rate of deposition on the catalyst 

was not as high as the Ca deposition. K release from biomass has been reported to occur at low 
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pyrolysis temperatures (<500 C) and at high temperatures (>500 C) during combustion.90-92 Since 

both pyrolysis and combustion were effected on this catalyst, it is reasonable to assume that 

deposits were contributed from the two processes.  

 

 

 Figure 9. Variation of deposition of various elements on FRM catalyst after 8X regeneration 

 

Magnesium (Mg) was also deposited on the catalyst after each pyrolysis/regeneration event.  The 

trend in Mg deposition appeared similar to the Ca in that there was an initial rapid increase, 

which then reached a maximum then decreased slightly and then rose again.  The amount of Mg 

deposited was four times less than the K deposited on the catalyst although the amounts of K 

and Mg in the ash were only slightly different (Table 2). It appears the rate of deposition of Mg 

was also different from that of Ca and this is not surprising since the release of each metal is 

strongly influenced by the reaction temperature and the presence of other elements such as 

chlorine or hydroxides .90-92 It has been reported that the presence of chlorine in the biomass has 

strong influence on the release of some ash elements .90-92 The deposition and adsorption of the 

Mg and Ca, which are both alkaline earth metals, appeared to follow saturation kinetics, because 

although these elements were still present in the biomass, there were no significant increases on 

the catalyst surface once the surface was saturated after the third regeneration.  In contrast, 

deposition and adsorption of K on the catalyst surface followed linear adsorption kinetics and 
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appeared to increase infinitely. This also suggested that K, Mg, and Ca were adsorbed on different 

sites as also reported by other researchers.57 

The phosphorous (P) concentration in the ash was relatively low and therefore its maximum 

deposition was less than 0.1 wt%.  The deposition of P did not appear to increase with time on 

stream but appeared to be steady through the eight regenerations probably because of the poor 

volatility of P compounds at the pyrolysis and regeneration temperatures.  

 

Effect of inorganic elements deposition on the catalyst performance 

The effect of inorganic elements deposition on the catalyst surface was assessed by the hourly 

monitoring of the viscosity of the oil produced from the same PJ wood with time on stream. After 

the first regeneration, the performance of the catalyst (Figure 6) showed minimal loss in activity 

despite the deposition of inorganic compounds on the catalyst surface.  The viscosity data 

collected for up to 14X pyrolysis/regenerations of the catalyst showed some interesting trends. 

The moisture content of the ESP oils used in these viscosity determinations ranged from 1-2% 

and therefore were not significantly affected by the moisture content of the oils. We have shown 

in our previous publications28,73 that the ESP oils have very little moisture because most of the 

moisture were condensed in the two condensers before the ESP collector.  A random plot of 

viscosity trends for the ESP oils with time on stream showed that the viscosity of the oils 

decreased slightly with the number of regenerations (Figure 10), which was attributed to 

contributions from the catalytic effect of the inorganic elements deposited on the catalyst.  

The bulk compositional analysis of the used catalyst showed that the major elements deposited 

(Ca, K, Mg, P) levelled-off after three pyrolysis/regenerations with the exception of K, which 

increased linearly. Using the linear correlation equation for K deposition, at the 14X regeneration, 

the K deposited would be 2.08%.  Since the deposition of the other elements levelled-off, it is 

therefore plausible that the change in viscosity of the ESP oils with higher regenerations was 

influenced by the amount of K deposited on the FRM. The changes in viscosity suggest that the K 

catalyzed the cracking of the higher molecular weight compounds and oligomers to lower 

molecular weight products, but did not produce biochar and gases in any significant quantities to 

influence the organic liquid yields.  These results are similar to the observations of Hwang et al 76 

and Mourant et al 89 who reported decrease in viscosity of pyrolysis oils with increase in alkali 

and alkaline earth metals (AAEM) content of the biomass feedstock. However, it should be noted 

that in the case of the above authors, the potassium was impregnated into the biomass whereas 

in the current study, the potassium was on the catalyst. This observation is in contrast with HZSM-

5, which tends to deactivate when K and other alkali and alkaline earth metals were deposited 

on the surface and in the pores.57-59  The pH of the catalyst slurry did not become acidic after 

regeneration.  In almost all cases, the pH of the slurry after each regeneration was 9-10. 

The yields of catalytic pyrolysis products are shown in Table 3. These data showed that although 

there were changes in the viscosity of the oils after each regeneration, the variation in the total 
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liquid yields (organic plus aqueous fractions) were minimal. The pH of the oils produced from 

each regeneration ranged 2.98-3.65 depending on the time on stream.  Lower pHs were observed 

at the beginning of each pyrolysis, but this increased gradually with time on stream with the 

highest pH occurring after 5 hours time on stream. The density of the ESP oils also showed some 

slight variation (1.1 to 1.2 g/cm3) with time on stream, but not much difference after 

regenerations.   

 

Table 3. Products distribution after several regenerations of FRM 

 Total liquid Char Gas 

Fresh (0x) 40.60 20.37 39.02 

1X 41.20 20.54 38.26 

2X 42.60 22.62 34.78 

3X 41.80 26.00 32.20 

6X 40.78 19.7 37.70 

7X 42.60 20.02 37.38 

8X 42.20 21.72 36.08 

10X 41.51 20.68 37.81 

14X 42.20 20.97 36.83 

Average 41.72 ±0.70 21.40±1.83 36.67±1.97 
 

The C, H, N, O, S analyses of the ESP oils taken at steady state at the end third hour on stream is 

shown in Table 4.  The data showed slight improvement in oxygen content of oil with 

regeneration of the catalyst. This reduction in oxygen content was corroborated by the data in 

Figure 10, which showed lower viscosity of the oils as the number of regenerations increased. 

The K deposited on the catalyst surface probably catalyzed the deoxygenation reactions similar 

to those reported by Imran et al .72 Imran et al 72 reported that pyrolysis of biomass mixed with 

alumina supported sodium carbonate (NaCO3/ɣ-Al2O3) catalyst reduced the oxygen content of 

biooil from 47.5 wt% to 16 wt% and there was reduction in the acidic fraction of the oil.  However, 

when the NaCO3/ɣ-Al2O3 catalyst was regenerated by combustion, it was permanently 

deactivated after the second regeneration and the loss of activity was attributed to blockage of 

the catalyst pores. In contrast, the FRM did not deactivate even after twenty combustion 

regenerations. After each regeneration, the viscosity of the oils after one hour on stream showed 

some slight variation, and this was attributed to the effectiveness of the catalyst regeneration.  

When most carbon on the surface was combusted during regeneration, the oil viscosity was low 

and the rate of oil viscosity increase was lower than that of the fresh catalyst, suggesting that the 

regeneration improved the activity of the catalyst instead of causing deactivation.  
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Figure 10.  Variation ESP oil viscosity with time on stream and number of regenerations. 

 

 Table 4. Analysis of FRM catalytic pyrolysis ESP oils taken at 3 h time on stream for 
various catalysts 

# Regen Moisture 
(wt%) 

Atomic 
H/C 

Atomic 
O/C 

C (wt%) H (wt%) N (wt%) O*(wt%) 

Fresh (0X) 2.56 1.20 0.365 62.69 6.25 0.53 30.53 

1X 2.74 1.22 0.351 63.41 6.47 0.48 29.64 

2X 2.85 1.26 0.355 63.07 6.61 0.48 29.84 

3X 3.27 1.28 0.359 62.84 6.68 0.42 30.06 

4X 3.14 1.28 0.352 63.21 6.73 0.39 29.67 

5X 3.54 1.25 0.336 64.18 6.71 0.39 28.72 

6X 3.57 1.27 0.327 64.62 6.82 0.35 28.21 

7X 3.41 1.27 0.321 64.96 6.88 0.33 27.83 

8X 3.62 1.27 0.323 64.87 6.85 0.32 27.96 

*Oxygen determined by difference; bd = below detection 

 

The C, H, O, N, S data were also analyzed with respect to the H/C and O/C ratios and these also 

showed some interesting trends. The H/C ratios plotted against the number of regenerations 

(Figure 11) showed two curves. The first curve between zero and the fourth regeneration 

occurred during the active deposition of K, Mg, and Ca (AAEM) on the FRM and the second curve 

between the fifth and eighth regenerations occurred when the Mg and Ca depositions had 

plateaued and decreased while the K concentration continued to increase.  In Figure 12, the slope 
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of the H/C vrs Mg is about 16 times higher than the Ca + Mg slope and 18 times steeper than the 

AAEM slope, which suggests that Mg had a positive effect on H/C ratio while K and Ca had a 

dilution effect on the H/C ratio.  It has been reported that Mg promoted the formation of 

levoglucosan (H/C =1.7) and other sugar compounds while the K and Ca promoted decomposition 

of the sugars and formation of aromatic compounds which will result in a lower H/C.  Compared 

to the fresh FRM (no regeneration), the deposition of the AAEM on the catalyst increased the 

H/C ratio of the pyrolysis oil which implies improved processability of the oil. 

 

 

Fig 11. Effect of FRM regeneration on H/C ratios of the catalytic pyrolysis oils (H/C = hydrogen to 

carbon ratio). 
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Fig 12. Effect of alkali and alkaline metal concentrations on H/C ratios of FRM catalytic pyrolysis 

oils (AAEM = alkali and alkaline earth metals; H/C = hydrogen to carbon ratio). 

 

 

The O/C ratios of the oils were also plotted against the number of regenerations (Figure 13), 

which showed a clear distinction between the fresh FRM and the regenerated catalysts that 

contained various concentrations of AAEM. This curve showed a maximum at the third 

regeneration when the Ca content of the catalyst was highest. The O/C started to decrease when 

Ca and Mg plateaued and started to decrease while the K content increased. This suggested that 

K promoted the deoxygenation of the pyrolysis oils while Ca and Mg increased it. Imran et al72 

also observed decrease in oxygen content of their pyrolysis oils when NaCO3/ɣ-Al2O was used for 

in situ pyrolysis of biomass, which is in agreement with the current results.  Thus, there is some 

synergistic effect of the AAEM on the FRM catalyst activity. A plot of AAEM versus O/C (Figure 

14) showed a cluster of three outliers to the general inverse correlation between the AAEM and 

O/C ratio. The three outliers contained relatively high levels of Ca and Mg and low levels of K, 

which again confirm the negative influence of Ca and Mg elements on the deoxygenation of the 

pyrolysis oils. 
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Fig 13. Effect of FRM regeneration of the O/C ratio of in situ catalytic pyrolysis oils (O/C = oxygen 

to carbon ratio). 
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Fig 14. The effect of AAEM concentration on the O/C ratios of FRM in situ catalytic pyrolysis oils 

(AAEM = alkali and alkaline earth metals; O/C = oxygen to carbon ratio). 
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Fig 15. Van Krevelen diagram of FRM in situ catalytic pyrolysis oils (O/C = oxygen to carbon ratio; 

H/C = hydrogen to carbon ratio).  

 

The van Krevelen diagram (Fig 15) of the FRM oils showed very interesting trend.  In general, as 

the H/C ratio increased the O/C ratio decreased showing increased energy content of the oil with 

decreasing O/C ratio. However, three samples formed a cluster of outliers in this general inverse 

correlation between H/C and O/C suggesting that although they had relatively high H/C ratios, 

their energy contents were relatively low.  These three samples were generated with catalysts 

containing very high Ca and Mg contents and low K content in the early stages of the catalyst 

regeneration, when the catalyst had not attained steady state SBET. When the catalyst was in the 

steady state after three regenerations, the negative effects of the Ca and Mg were countered by 

the positive effects of K to produce oils with relatively high energy contents. This again shows 

that the deposition of the inorganic elements on this catalyst had beneficial synergistic effects 

on the oil properties.  

The data from the catalyst characterization and product yields after multiple 

pyrolysis/regenerations clearly show that the FRM is regenerable, robust, and effective for in situ 

CFP of biomass feedstocks. 
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Conclusions 

It was demonstrated that reformulated red mud (FRM) is a robust suitable catalyst for in situ 

catalytic pyrolysis of biomass feedstocks. During pyrolysis/regenerations, there was some slight 

agglomeration of the catalyst, which then stabilized after three regenerations, but there was no 

significant loss of activity over time other than that due to fouling from coke.  The loss of catalyst 

activity that was manifested as increase in pyrolysis oil viscosity due to fouling by coke deposition 

on its surface. When the catalyst was regenerated several times by combustion of the coke, the 

activity was fully restored each time. The pyrolysis/regeneration deposited inorganic 

components of biomass (Ca, K, Mg, and P) on the catalyst at different rates.  The Ca and Mg 

depositions followed saturation kinetics while the K deposition was linear. Although significant 

quantities of the inorganic elements were deposited on the catalyst, this did not have any 

negative influence on the catalyst activity probably because the FRM has basic properties, which 

is compatible with the alkali nature of the inorganic elements of the biomass. The AAEM 

deposited on the catalyst also had some catalyst effect on the pyrolysis process. Unlike zeolite or 

other acidic catalyst that are deactivated by the inorganic elements, FRM catalyst was not 

deactivated by these compounds in the biomass feedstocks, but acted synergistically to improve 

the quality of the oil. 
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