1,118 research outputs found

    Intrinsic mechanism of phase locking in two-dimensional Josephson junction networks in presence of an external magnetic field

    Full text link
    We present numerical simulations of the dynamics of two-dimensional Josephson junction arrays to study the mechanism of mutual phase locking. We show that in the presence of an external magnetic field two mechanisms are playing a role in phase locking: feedback through the external load and internal coupling between rows due to microwave currents induced by the field. We have found the parameter values (junction capacitance, cell loop inductance, impedance of the external load) for which the interplay of both these mechanisms leads to the in-phase solution. The case of unshunted arrays is discussed as well.Comment: 13 pages, incl. 6 ps figures, Subm. to Europhysics Letter

    Anti-phase locking in a two-dimensional Josephson junction array

    Full text link
    We consider theoretically phase locking in a simple two-dimensional Josephson junction array consisting of two loops coupled via a joint line transverse to the bias current. Ring inductances are supposed to be small, and special emphasis is taken on the influence of external flux. Is is shown, that in the stable oscillation regime both cells oscillate with a phase shift equal to π\pi (i.e. anti-phase). This result may explain the low radiation output obtained so far in two-dimensional Josephson junction arrays experimentally.Comment: 11 pages, REVTeX, 1 Postscript figure, Subm. to Appl. Phys. Let

    Theory of phase-locking in generalized hybrid Josephson junction arrays

    Full text link
    A recently proposed scheme for the analytical treatment of the dynamics of two-dimensional hybrid Josephson junction arrays is extended to a class of generalized hybrid arrays with ''horizontal'' shunts involving a capacitive as well as an inductive component. This class of arrays is of special interest, because the internal cell coupling has been shown numerically to favor in-phase synchronization for certain parameter values. As a result, we derive limits on the circuit design parameters for realizing this state. In addition, we obtain formulas for the flux-dependent frequency including flux-induced switching processes between the in-phase and anti-phase oscillation regime. The treatment covers unloaded arrays as well as arrays shunted via an external load.Comment: 24 pages, REVTeX, 5 Postscript figures, Subm. to Phys. Rev.

    Ebola virus VP30 and nucleoprotein interactions modulate viral RNA synthesis

    Get PDF
    AbstractEbola virus (EBOV) is an enveloped negative-sense RNA virus that causes sporadic outbreaks with high case fatality rates. Ebola viral protein 30 (eVP30) plays a critical role in EBOV transcription initiation at the nucleoprotein (eNP) gene, with additional roles in the replication cycle such as viral assembly. However, the mechanistic basis for how eVP30 functions during the virus replication cycle is currently unclear. Here we define a key interaction between eVP30 and a peptide derived from eNP that is important to facilitate interactions leading to the recognition of the RNA template. We present crystal structures of the eVP30 C-terminus in complex with this eNP peptide. Functional analyses of the eVP30–eNP interface identify residues that are critical for viral RNA synthesis. Altogether, these results support a model where the eVP30–eNP interaction plays a critical role in transcription initiation and provides a novel target for the development of antiviral therapy.</jats:p

    VP24-Karyopherin alpha binding affinities differ between Ebolavirus species, nfluencing interferon inhibition and VP24 stability

    Get PDF
    Zaire ebolavirus (EBOV), Bundibugyo ebolavirus (BDBV), and Reston ebolavirus (RESTV) belong to the same genus but exhibit different virulence properties. VP24 protein, a structural protein present in all family members, blocks interferon (IFN) signaling and likely contributes to virulence. Inhibition of IFN signaling by EBOV VP24 (eVP24) involves its interaction with the NPI-1 subfamily of karyopherin alpha (KPNA) nuclear transporters. Here, we evaluated eVP24, BDBV VP24 (bVP24), and RESTV VP24 (rVP24) interactions with three NPI-1 subfamily KPNAs (KPNA1, KPNA5, and KPNA6). Using purified proteins, we demonstrated that each VP24 binds to each of the three NPI-1 KPNAs. bVP24, however, exhibited approximately 10-fold-lower KPNA binding affinity than either eVP24 or rVP24. Cell-based assays also indicate that bVP24 exhibits decreased KPNA interaction, decreased suppression of IFN induced gene expression, and a decreased half-life in transfected cells compared to eVP24 or rVP24. Amino acid sequence alignments between bVP24 and eVP24 also identified residues within and surrounding the previously defined eVP24-KPNA5 binding interface that decrease eVP24-KPNA affinity or bVP24-KPNA affinity. VP24 mutations that lead to reduced KPNA binding affinity also decrease IFN inhibition and shorten VP24 half-lives. These data identify novel functional differences in VP24-KPNA interaction and reveal a novel impact of the VP24-KPNA interaction on VP24 stability. IMPORTANCE The interaction of Ebola virus (EBOV) VP24 protein with host karyopherin alpha (KPNA) proteins blocks type I interferon (IFN) signaling, which is a central component of the host innate immune response to viral infection. Here, we quantitatively compared the interactions of VP24 proteins from EBOV and two members of the Ebolavirus genus, Bundibugyo virus (BDBV) and Reston virus (RESTV). The data reveal lower binding affinity of the BDBV VP24 (bVP24) for KPNAs and demonstrate that the interaction with KPNA modulates inhibition of IFN signaling and VP24 stability. The effect of KPNA interaction on VP24 stability is a novel functional consequence of this virus-host interaction, and the differences identified between viral species may contribute to differences in pathogenesis

    THEORY OF PHASE-LOCKING IN SMALL JOSEPHSON JUNCTION CELLS

    Full text link
    Within the RSJ model, we performed a theoretical analysis of phase-locking in elementary strongly coupled Josephson junction cells. For this purpose, we developed a systematic method allowing the investigation of phase-locking in cells with small but non-vanishing loop inductance.The voltages across the junctions are found to be locked with very small phase difference for almost all values of external flux. However, the general behavior of phase-locking is found to be just contrary to that according to weak coupling. In case of strong coupling there is nearly no influence of external magnetic flux on the phases, but the locking-frequency becomes flux-dependent. The influence of parameter splitting is considered as well as the effect of small capacitive shunting of the junctions. Strongly coupled cells show synchronization even for large parameter splitting. Finally, a study of the behavior under external microwave radiation shows that the frequency locking-range becomes strongly flux-dependent, whereas the locking frequency itself turns out to be flux-independent.Comment: 26 pages, REVTEX, 9 PS figures appended in uuencoded form at the end, submitted to Phys. Rev. B

    Ebola virus VP35 interaction with dynein LC8 regulates viral RNA synthesis

    Get PDF
    Ebola virus VP35 inhibits alpha/beta interferon production and functions as a viral polymerase cofactor. Previously, the 8-kDa cytoplasmic dynein light chain (LC8) was demonstrated to interact with VP35, but the functional consequences were unclear. Here we demonstrate that the interaction is direct and of high affinity and that binding stabilizes the VP35 N-terminal oligomerization domain and enhances viral RNA synthesis. Mutational analysis demonstrates that VP35 interaction is required for the functional effects of LC8

    Label-Free 3D Imaging of Development of Cell Patterns in Drosophila melanogaster Wing Imaginal Disc

    Get PDF
    Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7-August 11, 201

    Regular and Irregular Boundary Conditions in the AdS/CFT Correspondence

    Get PDF
    We expand on Klebanov and Witten's recent proposal for formulating the AdS/CFT correspondence using irregular boundary conditions. The proposal is shown to be correct to any order in perturbation theory.Comment: 7 pages, typos correcte
    corecore