We present numerical simulations of the dynamics of two-dimensional Josephson
junction arrays to study the mechanism of mutual phase locking. We show that in
the presence of an external magnetic field two mechanisms are playing a role in
phase locking: feedback through the external load and internal coupling between
rows due to microwave currents induced by the field. We have found the
parameter values (junction capacitance, cell loop inductance, impedance of the
external load) for which the interplay of both these mechanisms leads to the
in-phase solution. The case of unshunted arrays is discussed as well.Comment: 13 pages, incl. 6 ps figures, Subm. to Europhysics Letter