130 research outputs found

    Subsequential limits of fixed point sets

    Get PDF

    Systems and Methods of Laser Texturing of Material Surfaces and Their Applications

    Get PDF
    The surface of a material is textured and by exposing the surface to pulses from an ultrafast laser. The laser treatment causes pillars to form on the treated surface. These pillars provide for greater light absorption. Texturing and crystallization can be carried out as a single step process. The crystallization of the material provides for higher electric conductivity and changes in optical and electronic properties of the material. The method may be performed in vacuum or a gaseous environment. The gaseous environment may aid in texturing and/or modifying physical and chemical properties of the surfaces. This method may be used on various material surfaces, such as semiconductors, metals and their alloys, ceramics, polymers, glasses, composites, as well as crystalline, nanocrystalline, polycrystalline, microcrystalline, and amorphous phases

    Parametric Appraisal of Process Parameters for Adhesion of Plasma Sprayed Nanostructured YSZ Coatings Using Taguchi Experimental Design

    Get PDF
    This paper presents the application of the Taguchi experimental design in developing nanostructured yittria stabilized zirconia (YSZ) coatings by plasma spraying process. This paper depicts dependence of adhesion strength of as-sprayed nanostructured YSZ coatings on various process parameters, and effect of those process parameters on performance output has been studied using Taguchi’s L16 orthogonal array design. Particle velocities prior to impacting the substrate, stand-off-distance, and particle temperature are found to be the most significant parameter affecting the bond strength. To achieve retention of nanostructure, molten state of nanoagglomerates (temperature and velocity) has been monitored using particle diagnostics tool. Maximum adhesion strength of 40.56 MPa has been experimentally found out by selecting optimum levels of selected factors. The enhanced bond strength of nano-YSZ coating may be attributed to higher interfacial toughness due to cracks being interrupted by adherent nanozones

    Characterization of mesoscopic turbulent transport events with long-radial-range correlation in DIII-D H-mode plasmas

    Full text link
    A dimensionless collisionality scan has been performed in H-mode plasmas on DIII-D tokamak, with detailed measurements of intermediate-to-high wavenumber turbulence using Doppler backscattering systems. It is found that the shorter wavelength turbulence develops into spatially asymmetric turbulent structures with a long-radial-range correlation (LRRC) in the mid-radius region of high-collisionality discharges. Linear \textsc{cgyro} simulations indicate that the underlying turbulence is likely driven by the electron-temperature-gradient (ETG) mode. The LRRC transport events are highly intermittent and show a power spectrum of Sn~(k)k1S_{\tilde{n}}(k_\perp) \propto k^{-1}_\perp for density fluctuations, which is often associated with self-organized criticality. The magnitude and the radial scale of those turbulent structures increase significantly when the Er×BE_{r}\times B mean flow shearing rate decreases. The enhanced LRRC transport events appear to be correlated with the degraded energy confinement time. The emergence of such LRRC transport events may serve as a candidate explanation for the degrading nature of \emph{H}-mode core plasma confinement at high collisionality
    corecore