315 research outputs found

    Lack of Detection of Xenotropic Murine Leukemia Virus-Related Virus in HIV-1 Lymphoma Patients

    Get PDF
    Xenotropic murine leukemia virus-related virus (XMRV) is a gammaretrovirus reported to be associated with human prostate cancer and chronic fatigue syndrome. Since retroviruses cause various cancers, and XMRV replication might be facilitated by HIV-1 co-infection, we asked whether certain patients with HIV-associated lymphomas are infected with XMRV. Analysis of PMBCs and plasma from 26 patients failed to detect XMRV by PCR, ELISA, or Western blot, suggesting a lack of association between XMRV and AIDS-associated lymphomas

    A KRAS GTPase K104Q Mutant Retains Downstream Signaling by Offsetting Defects in Regulation

    Get PDF
    The KRAS GTPase plays a critical role in the control of cellular growth. The activity of KRAS is regulated by guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and also post-translational modification. Lysine 104 in KRAS can be modified by ubiquitylation and acetylation, but the role of this residue in intrinsic KRAS function has not been well characterized. We find that lysine 104 is important for GEF recognition, because mutations at this position impaired GEF-mediated nucleotide exchange. Because the KRAS K104Q mutant has recently been employed as an acetylation mimetic, we conducted a series of studies to evaluate its in vitro and cell-based properties. Herein, we found that KRAS K104Q exhibited defects in both GEF-mediated exchange and GAP-mediated GTP hydrolysis, consistent with NMR-detected structural perturbations in localized regions of KRAS important for recognition of these regulatory proteins. Despite the partial defect in both GEF and GAP regulation, KRAS K104Q did not alter steady-state GTP-bound levels or the ability of the oncogenic KRAS G12V mutant to cause morphologic transformation of NIH 3T3 mouse fibroblasts and of WT KRAS to rescue the growth defect of mouse embryonic fibroblasts deficient in all Ras genes. We conclude that the KRAS K104Q mutant retains both WT and mutant KRAS function, probably due to offsetting defects in recognition of factors that up-regulate (GEF) and down-regulate (GAP) RAS activity

    Hepatitis C Virus Genotype 4 in Ugandan Children and Their Mothers

    Get PDF
    In Kampala, Uganda, in 2001, hepatitis C virus antibodies were found in 27 (4%) of 603 children and in 62 (12%) of 525 of their mothers. However, only ≈10% of positive results were confirmed by reverse transcription–PCR, which suggests frequent false-positive results or viral clearance. All sequenced types were genotype 4

    Nucleic Acid, Antibody, and Virus Culture Methods to Detect Xenotropic MLV-Related Virus in Human Blood Samples

    Get PDF
    The MLV-related retrovirus, XMRV, was recently identified and reported to be associated with both prostate cancer and chronic fatigue syndrome. At the National Cancer Institute-Frederick, MD (NCI-Frederick), we developed highly sensitive methods to detect XMRV nucleic acids, antibodies, and replication competent virus. Analysis of XMRV-spiked samples and/or specimens from two pigtail macaques experimentally inoculated with 22Rv1 cell-derived XMRV confirmed the ability of the assays used to detect XMRV RNA and DNA, and culture isolatable virus when present, along with XMRV reactive antibody responses. Using these assays, we did not detect evidence of XMRV in blood samples (N = 134) or prostate specimens (N = 19) from two independent cohorts of patients with prostate cancer. Previous studies detected XMRV in prostate tissues. In the present study, we primarily investigated the levels of XMRV in blood plasma samples collected from patients with prostate cancer. These results demonstrate that while XMRV-related assays developed at the NCI-Frederick can readily measure XMRV nucleic acids, antibodies, and replication competent virus, no evidence of XMRV was found in the blood of patients with prostate cancer

    Aralar Sequesters GABA into Hyperactive Mitochondria, Causing Social Behavior Deficits

    Get PDF
    Social impairment is frequently associated with mitochondrial dysfunction and altered neurotransmission. Although mitochondrial function is crucial for brain homeostasis, it remains unknown whether mitochondrial disruption contributes to social behavioral deficits. Here, we show that Drosophila mutants in the homolog of the human CYFIP1, a gene linked to autism and schizophrenia, exhibit mitochondrial hyperactivity and altered group behavior. We identify the regulation of GABA availability by mitochondrial activity as a biologically relevant mechanism and demonstrate its contribution to social behavior. Specifically, increased mitochondrial activity causes gamma aminobutyric acid (GABA) sequestration in the mitochondria, reducing GABAergic signaling and resulting in social deficits. Pharmacological and genetic manipulation of mitochondrial activity or GABA signaling corrects the observed abnormalities. We identify Aralar as the mitochondrial transporter that sequesters GABA upon increased mitochondrial activity. This study increases our understanding of how mitochondria modulate neuronal homeostasis and social behavior under physiopathological conditions

    Evaluation of the selectivity and sensitivity of isoform- and mutation-specific RAS antibodies

    Get PDF
    Researchers rely largely on antibodies to measure the abundance, activity, and localization of a protein, information that provides critical insight into both normal and pathological cellular functions. However, antibodies are not always reliable or universally valid for the methods in which they are used; in particular, the reliability of commercial antibodies against RAS is highly variable. Waters et al . rigorously assessed 22 commercially available RAS antibodies for their utility to detect the distinct RAS isoforms in various cell types and for their use in specific analytical methods. Their findings show how reliably one can interpret the data acquired from each reagent
    corecore