542 research outputs found

    Two Component Heat Diffusion Observed in CMR Manganites

    Full text link
    We investigate the low-temperature electron, lattice, and spin dynamics of LaMnO_3 (LMO) and La_0.7Ca_0.3MnO_3 (LCMO) by resonant pump-probe reflectance spectroscopy. Probing the high-spin d-d transition as a function of time delay and probe energy, we compare the responses of the Mott insulator and the double-exchange metal to the photoexcitation. Attempts have previously been made to describe the sub-picosecond dynamics of CMR manganites in terms of a phenomenological three temperature model describing the energy transfer between the electron, lattice and spin subsystems followed by a comparatively slow exponential decay back to the ground state. However, conflicting results have been reported. Here we first show clear evidence of an additional component in the long term relaxation due to film-to-substrate heat diffusion and then develop a modified three temperature model that gives a consistent account for this feature. We confirm our interpretation by using it to deduce the bandgap in LMO. In addition we also model the non-thermal sub-picosecond dynamics, giving a full account of all observed transient features both in the insulating LMO and the metallic LCMO.Comment: 6 pages, 5 figures http://link.aps.org/doi/10.1103/PhysRevB.81.064434 v2: Abstract correcte

    Characterization of Nucleobase Analogue FRET Acceptor tC(nitro)

    Get PDF
    The fluorescent nucleobase analogues of the tricyclic cytosine (tC) family, tC and tC(O), possess high fluorescence quantum yields and single fluorescence lifetimes, even after incorporation into double-stranded DNA, which make these base analogues particularly useful as fluorescence resonance energy transfer (FRET) probes. Recently, we reported the first all-nucleobase FRET pair consisting of tC(O) as the donor and the novel tC(nitro) as the acceptor. The rigid and well-defined position of this FRET pair inside the DNA double helix, and consequently excellent control of the orientation factor in the FRET efficiency, are very promising features for future studies of nucleic acid structures. Here, we provide the necessary spectroscopic and photophysical characterization Of tC(nitro) needed in order to utilize this probe as a FRET acceptor in nucleic acids. The lowest energy absorption band from 375 to 525 nm is shown to be the result of a single in-plane polarized electronic transition oriented similar to 27 degrees from the molecular long axis, This band overlaps the emission bands of both tC and tC(O), and the Forster characteristics of these donor-acceptor pairs are calculated for double-stranded DNA scenarios. In addition, the UV-vis absorption of tC(nitro) is monitored in a broad pH range and the neutral form is found to be totally predominant under physiological conditions with a pK(a) of 11.1. The structure and electronic spectrum Of tC(nitro) is further characterized by density functional theory calculations

    Effects of hydrogen bonding on supercooled liquid dynamics and the implications for supercooled water

    Get PDF
    The supercooled state of bulk water is largely hidden by unavoidable crystallization, which creates an experimentally inaccessible temperature regime - a 'no man's land'. We address this and circumvent the crystallization problem by systematically studying the supercooled dynamics of hydrogen bonded oligomeric liquids (glycols), where water corresponds to the chain-ends alone. This novel approach permits a 'dilution of water' by altering the hydrogen bond concentration via variations in chain length. We observe a dynamic crossover in the temperature dependence of the structural relaxation time for all glycols, consistent with the common behavior of most supercooled liquids. We find that the crossover becomes more pronounced for increasing hydrogen bond concentrations, which leads to the prediction of a marked dynamic transition for water within 'no man's land' at T~220 K. Interestingly, the predicted transition thus takes place at a temperature where a so called 'strong-fragile' transition has previously been suggested. Our results, however, imply that the dynamic transition of supercooled water is analogous to that commonly observed in supercooled liquids. Moreover, we find support also for the existence of a secondary relaxation of water with behavior analogous to that of the secondary relaxation observed for the glycols.Comment: 20 pages, 5 figures; corrected typos, title changed, small clarifying text changes, two labels removed from Fig. 2

    Exploring the potential of a hybrid device combining solar water heating and molecular solar thermal energy storage

    Get PDF
    A hybrid solar energy system consisting of a molecular solar thermal energy storage system (MOST) combined with a solar water heating system (SWH) is presented. The MOST chemical energy storage system is based on norbornadiene–quadricyclane derivatives allowing for conversion of solar energy into stored chemical energy at up to 103 kJ mol1 (396 kJ kg1 ). It is demonstrated that 1.1% of incoming solar energy can be stored in the chemical system without significantly compromising the efficiency of the solar water heating system, leading to efficiencies of combined solar water heating and solar energy storage of up to 80%. Moreover, prospects for future improvement and possible applications are discussed

    Preclinical amyloid pathology biomarker positivity: effects on tau pathology and neurodegeneration

    Get PDF
    Brain autopsy and biomarker studies indicate that the pathology of Alzheimer's disease (AD) is initiated at least 10-20 years before clinical symptoms. This provides a window of opportunity to initiate preventive treatment. However, this emphasizes the necessity for biomarkers that identify individuals at risk for developing AD later in life. In this cross-sectional study, originating from three epidemiologic studies in Sweden (n=1428), the objective was to examine whether amyloid pathology, as determined by low cerebrospinal fluid (CSF) concentration of the 42 amino acid form of β-amyloid (Aβ42), is associated with biomarker evidence of other pathological changes in cognitively healthy elderly. A total of 129 patients were included and CSF levels of Aβ42, total tau, tau phosphorylated at threonine 181 (p-tau), neurogranin, VILIP-1, VEGF, FABP3, Aβ40, neurofilament light, MBP, orexin A, BDNF and YKL-40 were measured. Among these healthy elderly, 35.6% (N=46) had CSF Aβ42 levels below 530 pg ml(-1). These individuals displayed significantly higher CSF concentrations of t-tau (P<0.001), p-tau (181) (P<0.001), neurogranin (P=0.009) and FABP3 (P=0.044) compared with amyloid-negative individuals. Our study indicates that there is a subpopulation among healthy older individuals who have amyloid pathology along with signs of ongoing neuronal and synaptic degeneration, as well as tangle pathology. Previous studies have demonstrated that increase in CSF tau and p-tau is a specific sign of AD progression that occurs downstream of the deposition of Aβ. On the basis of this, our data suggest that these subjects are at risk for developing AD. We also confirm the association between APOE ɛ4 and amyloid pathology in healthy older individuals

    Use of near infrared reflectance spectroscopy to predict nitrogen uptake by winter wheat within fields with high variability in organic matter

    Get PDF
    In this study, the ability to predict N-uptake in winter wheat crops using NIR-spectroscopy on soil samples was evaluated. Soil samples were taken in unfertilized plots in one winter wheat field during three years (1997-1999) and in another winter wheat field nearby in one year (2000). Soil samples were analyzed for organic C content and their NIR-spectra. N-uptake was measured as total N-content in aboveground plant materials at harvest. Models calibrated to predict N-uptake were internally cross validated and validated across years and across fields. Cross-validated calibrations predicted N-uptake with an average error of 12.1 to 15.4 kg N ha-1. The standard deviation divided by this error (RPD) ranged between 1.9 and 2.5. In comparison, the corresponding calibrations based on organic C alone had an error from 11.7 to 28.2 kg N ha-1 and RPDs from 1.3 to 2.5. In three of four annual calibrations within a field, the NIR-based calibrations worked better than the organic C based calibrations. The prediction of N-uptake across years, but within a field, worked slightly better with an organic C based calibration than with a NIR based one, RPD = 1.9 and 1.7 respectively. Across fields, the corresponding difference was large in favour of the NIR-calibration, RPD = 2.5 for the NIR-calibration and 1.5 for the organic C calibration. It was concluded that NIR-spectroscopy integrates information about organic C with other relevant soil components and therefore has a good potential to predict complex functions of soils such as N-mineralization. A relatively good agreement of spectral relationships to parameters related to the N-mineralization of datasets across the world suggests that more general models can be calibrated

    Theoretical study of the thermal behavior of free and alumina-supported Fe-C nanoparticles

    Full text link
    The thermal behavior of free and alumina-supported iron-carbon nanoparticles is investigated via molecular dynamics simulations, in which the effect of the substrate is treated with a simple Morse potential fitted to ab initio data. We observe that the presence of the substrate raises the melting temperature of medium and large Fe1xCxFe_{1-x}C_x nanoparticles (xx = 0-0.16, NN = 80-1000, non- magic numbers) by 40-60 K; it also plays an important role in defining the ground state of smaller Fe nanoparticles (NN = 50-80). The main focus of our study is the investigation of Fe-C phase diagrams as a function of the nanoparticle size. We find that as the cluster size decreases in the 1.1-1.6-nm-diameter range the eutectic point shifts significantly not only toward lower temperatures, as expected from the Gibbs-Thomson law, but also toward lower concentrations of C. The strong dependence of the maximum C solubility on the Fe-C cluster size may have important implications for the catalytic growth of carbon nanotubes by chemical vapor deposition.Comment: 13 pages, 11 figures, higher quality figures can be seen in article 9 at http://alpha.mems.duke.edu/wahyu

    Understanding valuation of travel time changes: are preferences different under different stated choice design settings?

    Get PDF
    Stated choice (SC) experiments are the most popular method to estimate the value of travel time changes (VTTC) of a population. In the simplest VTTC experiment, the SC design variables are time changes and cost changes. The levels of these variables create a particular setting from which preferences are inferred. This paper tries to answer the question “do preferences vary with SC settings?”. For this, we investigate the role of the variables used in the SC experiment on the estimation of the set of VTTC (i.e. mean and covariates). Ideally, one would like to observe the same individuals completing different SC experiments. Since that option is not available, an alternative approach is to use a large dataset of responses, and split it according to different levels of the variable of interest. We refer to this as partial data analysis. The estimation of the same model on each sub-sample provides insights into potential effects of the variable of interest. This approach is applied in relation to three design variables on the data for the last national VTTC study in the UK, using state-of-the-art model specifications. The results show several ways in which the estimated set of VTTC can be affected by the levels of SC design variables. We conclude that model estimates (including the VTTC and covariates) are different in different settings. Hence by focussing the survey on specific settings, sample level results will be affected accordingly. Our findings have implications for appraisal and can inform the construction of future SC experiments

    Struggling for recognition and inclusion—parents' and pupils' experiences of special support measures in school

    Get PDF
    During the last decade an increasing use of differentiated support measures for pupils with special educational needs, indicative of a discrepancy between educational policies and practices, has been witnessed in Sweden. Another trend has been the increased use of medical diagnoses in school. The aim of this study was to explore the main concern of support given to pupils with special educational needs and how pupils and parents experience and handle this. Interviews were conducted with eight pupils in Grades 7–9—and their parents—at two compulsory schools in a city in northern Sweden. A grounded theory approach was used for analyzing the interview data. A conceptual model was generated illuminating the main concern of special support measures for pupils and parents. The core category of the model, struggling for recognition and inclusion, was related to two categories, which further described how this process was experienced and handled by the participants. These categories were labeled negotiating expertise knowledge within a fragmented support structure and coping with stigma, ambivalence, and special support measures. The developed conceptual model provides a deeper understanding of an ongoing process of struggle for recognition and inclusion in school as described by the pupils and parents

    Grey Literature and Professional Knowledge Making

    Get PDF
    International audienceWhat does grey literature mean? What role does it play in the production and dissemination of practitioner knowledge? How do reports, presentations and communications, working papers and other un-published material contribute to professional, extra-academic knowledge making? The following paper tries to provide some elements for a better understanding of grey literature, with examples from different collections and disciplines. Moreover, it puts the focus on critical issues like standards, identifiers and quality, and it discusses the impact of open science, i.e. the movement to make scientific research, data and dissemination accessible to all levels of an inquiring society, amateur or professional
    corecore